Detection and Monitoring of Mining-Induced Seismicity Based on Machine Learning and Template Matching: A Case Study from Dongchuan Copper Mine, China
<p>Workflow diagram showing the detection and monitoring of mining-induced earthquakes.</p> "> Figure 2
<p>(<b>a</b>) Location of Dongchuan Copper Mine in China. (<b>b</b>) Distribution of deposits in Dongchuan Copper Mine and seismic stations used in this study. Blue dots indicate the epicenter of the regional network catalog from 2009 to 2021. Abbreviations: SKS, Sikeshu; YKS, Yikeshu; YM, Yinmin; LX, Luoxue; SJJ, Shijiangjun; LNP, Lanniping; BXL, Baixila.</p> "> Figure 3
<p>An example of machine learning-based phase picking. (<b>a</b>) A segment of 30 s waveforms starting from 02:36:30. (<b>b</b>) Probabilities of P-wave phase (blue) and S-wave phase (red). The picking probabilities threshold is set to 0.3 in this study. The event near 20:36:33 can be detected due to its high probability; however, the event within the red rectangle at 02:36:50 cannot be detected.</p> "> Figure 4
<p>(<b>a</b>) The 1D velocity model used for phase association. (<b>b</b>) Travel time–hypocentral distance curves of 856 associated earthquakes.</p> "> Figure 5
<p>Earthquake catalog comparison between (<b>a</b>) phase association, (<b>b</b>) absolute location, (<b>c</b>) relative location, and (<b>d</b>) template matching. Yellow dots indicate the Cu deposits. Red dots indicate the epicenter of seismic events. Open triangles indicate the short-period stations. Green triangles indicate the broadband stations. Black solid triangle indicates the reginal station.</p> "> Figure 6
<p>Magnitude–time plot of seismicity during the entire study period.</p> "> Figure 7
<p>Comparison of magnitude completeness between regional network catalog and dense array catalog obtained in this study.</p> "> Figure 8
<p>High-precision earthquake catalog (same as <a href="#sensors-24-07312-f005" class="html-fig">Figure 5</a>d) around the Dongchuan Copper Mines using a dense seismic array, machine learning, and template matching. (<b>a</b>) Map view. (<b>b</b>) West–east cross-section. (<b>c</b>) North–south cross-section. (<b>d</b>) Enlarged view of SJJ cluster. (<b>e</b>) Enlarged view of LNP cluster. Beach balls indicate the focal mechanism. Yellow dots indicate the Cu deposits. Red dots indicate the epicenter of seismic events. Open triangles indicate the seismic stations.</p> "> Figure 9
<p>(<b>a</b>) The 3D view of the SJJ (red) and LNP (orange) clusters. (<b>b</b>) The projections of the SJJ and LNP clusters on each plane in 3D space.</p> "> Figure 10
<p>Cumulative number of seismicity and seismicity rate per day for (<b>a</b>) SJJ cluster and (<b>b</b>) LNP cluster, respectively.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Workflow
2.2. Data
2.3. Phase Picking Based on Machine Learning
2.4. Phase Association
2.5. Absolute and Relative Earthquake Location
2.6. Template Matching
2.7. Magnitude Estimation
2.8. Machine Learning-Based First-Motion-Polarity Picking and Focal Mechanism Inversion
3. Results and Discussion
3.1. Comparison with the Regional Seismic Network Catalog
3.2. Physical Mechanisms of Mining-Induced Seismicity
3.3. Implications for Future Induced Seismicity Monitoring
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foulger, G.R.; Wilson, M.P.; Gluyas, J.G.; Julian, B.R.; Davies, R.J. Global review of human-induced earthquakes. Earth-Sci. Rev. 2018, 178, 438–514. [Google Scholar] [CrossRef]
- Mcgarr, A. Moment tensors of 10 Witwatersrand mine tremors. Pure Appl. Geophys. 1992, 139, 781–800. [Google Scholar] [CrossRef]
- Gibowicz, S.J. Seismicity induced by mining. In Advances in Geophysics; Dmowska, R., Saltzman, B., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; Volume 32, pp. 1–74. [Google Scholar]
- Li, T.; Cai, M.F.; Cai, M. A review of mining-induced seismicity in China. Int. J. Rock. Mech. Min. 2007, 44, 1149–1171. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Tang, S.; Zhao, H.; Shi, X.; Wang, L.; Wu, H.; Xiang, P. High-speed railway seismic response prediction using CNN-LSTM hybrid neural network. J. Civ. Struct. Health 2024, 14, 1125–1139. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Z.; Hollis, D.; Zhu, L.; McClellan, J. High-resolution seismic event detection using local similarity for Large-N arrays. Sci. Rep. 2018, 8, 1646. [Google Scholar] [CrossRef]
- Mordret, A.; Roux, P.; Boué, P.; Ben-Zion, Y. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array. Geophys. J. Int. 2019, 216, 896–905. [Google Scholar] [CrossRef]
- Guo, T.; Liang, S.; Zou, L. Using the microseismic template match and locate method to identify microseismic events in the Fushun mining area, Liaoning. Seismol. Geomagn. Obs. Res. 2021, 42, 76–81. [Google Scholar]
- Zhao, Y.; Liu, W.; Gao, Y. Distinguishing earthquake, explosion and mine earthquake in Beijing area. Seismol. Geomagn. Obs. Res. 1995, 4, 48–54. [Google Scholar]
- Zhu, W.; Beroza, G.C. PhaseNet: A deep-neural-network-based seismic arrival time picking method. Geophys. J. Int. 2018, 216, 261–273. [Google Scholar] [CrossRef]
- Dai, H.; Liu, J.; Zhu, W. Studies on tectonic setting, sedimentary environment and mineralization mechanism of the Yinmin copper deposit in Yunnan Province. Earth Sci. Front. 2018, 25, 108–124. [Google Scholar]
- Du, Y.; Fang, W.; Liu, Y. Analyzing of non-pollution type enviromental geology problem of Yinmin mine in Dongchuan cu deposit. J. Earth Sci. Environ. 2010, 32, 404–408. [Google Scholar]
- Zhang, M.; Ellsworth, W.L.; Beroza, G.C. Rapid earthquake association and location. Seismol. Res. Lett. 2019, 90, 2276–2284. [Google Scholar] [CrossRef]
- Klein, F.W. User’s guide to HYPOINVERSE-2000, a fortran program to solve for earthquake locations and magnitudes. In Open-File Report; US Geological Survey: Reston, VA, USA, 2002; p. 123. [Google Scholar]
- Waldhauser, F.; Ellsworth, W.L. A double-difference earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. 2000, 90, 1353–1368. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, L. An effective method for small event detection: Match and locate (M&L). Geophys. J. Int. 2015, 200, 1523–1537. [Google Scholar]
- Trugman, D.T.; Chamberlain, C.J.; Savvaidis, A.; Lomax, A. GrowClust3D.jl: A julia package for the relative relocation of earthquake hypocenters using 3D velocity models. Seismol. Res. Lett. 2022, 94, 443–456. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, Z.; Zhang, M.; Yang, Y.; Tang, L.; Chen, S. DiTingMotion: A deep-learning first-motion-polarity classifier and its application to focal mechanism inversion. Front. Earth Sci. 2023, 11, 1103914. [Google Scholar] [CrossRef]
- Stevenson, P.R. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing. Bull. Seismol. Soc. Am. 1976, 66, 61–80. [Google Scholar] [CrossRef]
- Chen, A.; Gao, Y. Developments of research on earthquake detection methods. Prog. Geophys. 2019, 34, 853–861. [Google Scholar]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Zhou, B.; Zhang, L.; Dai, M.; Zhao, L.; Wei, F.; Zhou, Z. Comparative Study on Seismic Phase Picking of PhaseNet and EQTransformer. J. Geod. Geodyn. 2023, 43, 656–660. [Google Scholar]
- Zhang, M.; Liu, M.; Feng, T.; Wang, R.; Zhu, W. LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow. Seismol. Res. Lett. 2022, 93, 2426–2438. [Google Scholar] [CrossRef]
- Wu, J.; Cai, Y.; Wang, W.; Wang, W.; Wang, C.; Fang, L.; Liu, Y.; Liu, J. Three dimensional velocity model and its tectonic implications at China Seismic Experimental Site, eastern margin of the Tibetan Plateau. Sci. Sin. 2024, 54, 2304–2326. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.Y.; Li, L.; Zhang, M.; Wang, W.T. Multistage nucleation of the 2021 Yangbi MS 6.4 earthquake, Yunnan, China and its foreshocks. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024091. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.Y.; Zhang, M.; Wang, W.T.; Yang, Y.H.; Li, L.; Chang, Z.F.; Zhang, H.P. Investigation of the 2013 Eryuan, Yunnan, China Ms 5.5 earthquake sequence: Aftershock migration, seismogenic structure and hazard implication. Tectonophysics 2022, 837, 229445. [Google Scholar] [CrossRef]
- Shelly, D.R.; Beroza, G.C.; Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 2007, 446, 305–307. [Google Scholar] [CrossRef]
- Peng, Z.; Zhao, P. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci. 2009, 2, 877–881. [Google Scholar] [CrossRef]
- GB 17740—2019; General Ruler for Earthquake Magnitude. Chinese National Standard: Beijing, China, 2019.
- Yang, W.; Chen, G.; Meng, L.; Zang, Y.; Zhang, H.; Li, J. Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin. Earth Planet. Phys. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Shelly, D.R.; Hardebeck, J.L. Illuminating faulting complexity of the 2017 yellowstone maple creek earthquake swarm. Geophys. Res. Lett. 2019, 46, 2544–2552. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, Z.; Chen, S.; Fang, L. DiTing: A large-scale Chinese seismic benchmark dataset for artificial intelligence in seismology. Earthq. Sci. 2023, 36, 84–94. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.; Hauksson, E. P Wave Arrival Picking and First-Motion Polarity Determination with Deep Learning. J. Geophys. Res. Solid Earth 2018, 123, 5120–5129. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Wilson, M.P.; Foulger, G.R.; Gluyas, J.G.; Davies, R.J.; Julian, B.R. HiQuake: The human-induced earthquake database. Seismol. Res. Lett. 2017, 88, 1560–1565. [Google Scholar] [CrossRef]
- Wang, T.; Fang, W.; Du, Y. The morphological characteristics of iron-copper orebody and ore-controlling factors in Lanniping, Dongchuan. Metal. Mine 2012, 5, 113–115,129. [Google Scholar]
- Castellanos, F.; Van der Baan, M. Dynamic triggering of microseismicity in a mine setting. Geophys. J. Int. 2015, 202, 728–737. [Google Scholar] [CrossRef]
- Fei, Z.; Wu, D.; Yang, Z.; Tong, Z. Influence analysis of underground mining on the stability of main and auxiliary mineshaft in Dashuigou section of Yinmin copper mine. J. Kunming Metall. Coll. 2019, 35, 1–5. [Google Scholar]
- Kubacki, T.; Koper, K.D.; Pankow, K.L.; McCarter, M.K. Changes in mining-induced seismicity before and after the 2007 Crandall Canyon Mine collapse. J. Geophys. Res. Solid Earth 2014, 119, 4876–4889. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Wang, L.; Cui, H.; Xie, X.; Wu, H.; Liu, X.; Gao, B.; Wang, H.; Xiang, P. A Quasi-Distributed optic fiber sensing approach for interlayer performance analysis of ballastless Track-Type II plate. Opt. Laser Technol. 2024, 170, 110237. [Google Scholar] [CrossRef]
- Hu, T.; Hou, G.Y.; Li, Z.X. The Field Monitoring Experiment of the Roof Strata Movement in Coal Mining Based on DFOS. Sensors 2020, 20, 1318. [Google Scholar] [CrossRef]
- Li, J.; Yao, H.; Wang, B.; Yang, Y.; Hu, X.; Zhang, L.; Ye, B.; Yang, J.; Li, X.; Liu, F.; et al. A real-time AI-assisted seismic monitoring system based on new nodal stations with 4G telemetry and its application in the Yangbi MS 6.4 aftershock monitoring in southwest China. Earthq. Res. Adv. 2022, 2, 100033. [Google Scholar] [CrossRef]
- Zhu, W.; Hou, A.B.; Yang, R.; Datta, A.; Mousavi, S.M.; Ellsworth, W.L.; Beroza, G.C. QuakeFlow: A scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophys. J. Int. 2023, 232, 684–693. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Liu, Z.; Yan, S. Detection and Monitoring of Mining-Induced Seismicity Based on Machine Learning and Template Matching: A Case Study from Dongchuan Copper Mine, China. Sensors 2024, 24, 7312. https://doi.org/10.3390/s24227312
Wu T, Liu Z, Yan S. Detection and Monitoring of Mining-Induced Seismicity Based on Machine Learning and Template Matching: A Case Study from Dongchuan Copper Mine, China. Sensors. 2024; 24(22):7312. https://doi.org/10.3390/s24227312
Chicago/Turabian StyleWu, Tao, Zhikun Liu, and Shaopeng Yan. 2024. "Detection and Monitoring of Mining-Induced Seismicity Based on Machine Learning and Template Matching: A Case Study from Dongchuan Copper Mine, China" Sensors 24, no. 22: 7312. https://doi.org/10.3390/s24227312