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Abstract: Unmanned Aerial Vehicle (UAV)-type Quadrotors are highly nonlinear systems that are
difficult to control and stabilize outdoors, especially in a windy environment. Many algorithms have
been proposed to solve the problem of trajectory tracking using UAVs. However, current control
systems face significant hurdles, such as parameter uncertainties, modeling errors, and challenges
in windy environments. Sensitivity to parameter variations may lead to performance degradation
or instability. Modeling errors arise from simplifications, causing disparities between assumed and
actual behavior. Classical controls may lack adaptability to dynamic changes, necessitating adaptive
strategies. Limited robustness in handling uncertainties can result in suboptimal performance. Windy
environments introduce disturbances, impacting system dynamics and precision. The complexity of
wind modeling demands advanced estimation and compensation strategies. Tuning challenges may
necessitate frequent adjustments, posing practical limitations. Researchers have explored advanced
control paradigms, including robust, adaptive, and predictive control, aiming to enhance system
performance amidst uncertainties in a scientifically rigorous manner. Our approach does not require
knowledge of UAVs and noise models. Furthermore, the use of the Type-2 controller makes our
approach robust in the face of uncertainties. The effectiveness of the proposed approach is clear
from the obtained results. In this paper, robust and optimal controllers are proposed, validated,
and compared on a quadrotor navigating an outdoor environment. First, a Type-2 Fuzzy Logic
Controller (FLC) combined with a PID is compared to a Type-1 FLC and Backstepping controller.
Second, a Genetic Algorithm (GA) is proposed to provide the optimal PID-Type-2 FLC tuning.
The Backstepping, PID-Type-1 FLC, and PID-Type-2 FLC with GA optimization are validated and
evaluated with real scenarios in a windy environment. Deep robustness analysis, including error
modeling, parameter uncertainties, and actuator faults, is considered. The obtained results clearly
show the robustness of the optimal PID-Type-2 FLC compared to the Backstepping and PID-Type-1
FLC controllers. These results are confirmed by the numerical index of each controller compared to
the PID-type-2 FLC, with 12% for the Backstepping controller and 51% for the PID-Type-1 FLC.

Keywords: quadrotor; Type-1 FLC; Type-2 FLC; backstepping controller; robustness analyses;
parameter uncertainties; genetic algorithm; wind gust

1. Introduction

Using robots in search and rescue (SAR) operations has become a significant issue for
a variety of applications. Search and rescue missions, as well as simulations, have revealed
a number of areas where robot contributions could be improved. The quadrotor system
is one of the most efficient and complicated robots, and it is widely employed in military
and commercial applications. Autonomous navigation of a quadrotor (stability, trajectory
tracking, obstacle avoidance, etc.) remains a difficult problem to solve.
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In recent year, UAVs have known greater popularity for their applications due to
inexpensive operating costs and high performance. They have been used in several fields,
including surveillance and reconnaissance, battle assessment, and aerial photography. As
depicted in Figure 1, a quadrotor is a multi-rotor micro aerial vehicle that is lifted and
powered by four rotors. Quadrotor guidance, navigation, and control have become an
active area of research among the versatile flying robotic platforms due to their exceptional
rotational agility, mechanical simplicity, relatively small size, Vertical Take-Off and Landing
(VTOL) ability, and affordability [1]. Furthermore, because it is unmanned, UAV operation
eliminates all expenses and hazards connected with onboard human pilots in both civilian
and military domains, such as landscape mapping, agricultural surveying, monitoring, and
aerial photography [2].
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The originality of this work consists of optimizing FLC Type-1 and Type-2 as well as
backstepping controllers using a genetic algorithm, to improve their control robustness
for quadrotor trajectory tracking in an uncertain environment. Three controllers are imple-
mented and compared: the PID-Type-1 FLC, the PID-Type-2 FLC, and the backstepping
controller with genetic algorithm optimization. First, a Type-2 FLC combined with a PID is
compared to a PID-Type-1 FLC and Backstepping controller. Second, a GA is proposed to
provide the optimal PID-Type-2 FLC tuning. The Backstepping controller, PID-Type-1 FLC,
and PID-Type-2 FLC with GA optimization are validated and evaluated with real scenarios
in a windy environment. Deep robustness analysis, including error modeling, parameter
uncertainties, and actuator faults, is considered.

The related works are studied in the next section, followed by the system modeling
with robustness analysis using the Wind Gust Model in Section 3. The different control
designs are presented in Section 4, while Section 5 presents the results and discussion. The
conclusions are given in Section 6.

2. Related Works

Several research works for quadrotor guidance and navigation have been proposed in
the literature in the last few years. We recognize that crafting a high-quality flight design
poses a significant challenge for quadrotor UAVs, given their nonlinear characteristics. In
enhancing UAV flight performance, numerous researchers have introduced sophisticated
methods to stabilize attitude and improve UAV positions and tracking. Several methods
for automatic flight control systems have been considered for quadrotor localization, plani-
fication, and navigation. The Backstepping controller, which was used recently in [3], is
widely used for UAV navigation [4]. An extension of adaptive Backstepping using neural
networks is proposed in [5], where a Stable Adaptive Neural Control is proposed. Lee
and Tomizuka designed a similar method using an FLC [6]. On the other hand, Pan et al.
extended the use of an adaptive Backstepping approach for systems in strict-feedback form
based on a multi-layer neural network [7]. Raziyeh et al. proposed a robust controller
based on Backstepping and an Extended Kalman Bucy filter in [8]. Many researchers [9,10]
have studied UAV navigation using FLCs. A novel PID FLC for quadrotor navigation using
iterative learning control (ILC) was designed for a quadrotor unmanned aerial vehicle
(UAV) in [11]. In the same case in [12], a hybrid PID-Fuzzy controller was studied for
autonomous UAV stabilization. The Type-2 Fuzzy-PID approach is presented in [13] for the
transmission line follower problem through UAVs. Nevertheless, the controllers previously
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proposed remain conventional in the face of the inherent complexity of the system and the
constraints arising from uncertain parameters. This is where advanced research comes into
play, aiming to enhance basic adaptive controllers through novel approaches, particularly
by combining and optimizing these control parameters. Various new approaches have been
proposed for system stabilization.

In the study referenced in [14], the authors employed a Fuzzy-Gain scheduling mech-
anism to fine-tune the PID controller for stabilizing both position and altitude. It is im-
perative for this control strategy to be efficacious, straightforward, and resilient against
uncertainties and external disturbances. Reference [15] introduced the application of an
Autonomous Quadcopter Trajectory Tracking and Stabilization system using a control sys-
tem based on Sliding Mode Control and the Kalman Filter. Additionally, the authors of [16]
proposed an algorithm for synthesizing an optimal controller to address the mixed H2/H∞
control problem for stabilizing aircraft during the glidepath landing mode under uncer-
tainty. For example, in [17], the authors implemented a data-driven neuroendocrine-PID
controller for underactuated systems. The notable advantage of this proposed approach lies
in its capability to swiftly tune neuroendocrine-PID parameters by measuring the system’s
input and output data without relying on a mathematical model.

In summary, several works have focused on the trajectory control of quadrotors. Thus,
the comparison between numerous control methods makes it possible to demonstrate
the robustness of the latter in an uncertain environment. This paper introduces various
approaches, which can be classified into the following categories: model-based methods
(using a Backstepping controller), model-free methods (employing Fuzzy Logic Controller
Type-1 combined with PID and Fuzzy Logic Controller Type-2 Combined with PID), and
parameter optimizations using genetic algorithms as a novelty.

3. System Modelling
3.1. Basic Concepts of Quadrotor UAVs

The model of quadrotor illustrated in Figure 2 is taken from [18] and defined as a
VTOL with four propellers. Its four propellers are placed at each extremity of a cross
structure, where two pairs of propellers turn in opposite directions. The displacement
or the rotation motions are performed by adjusting the angular velocity speeds of each
rotor. By varying the rotor speeds, it is possible to make vertical lateral and longitudi-
nal translations as well as a rotation about vertical axis. However, the quadrotor UAV
has six Degrees of freedom (DOFs), three motions of rotations and translations in Carte-
sian space, and is controlled by only four inputs, which are thrust force, roll, pitch, and
yaw moments.
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3.2. Quadrotor Flight Kinematic and Dynamic Model

The quadrotor’s kinematics establish a connection between the vehicle’s position in the
inertial frame and its velocity in the body frame. Meanwhile, the dynamics of the quadrotor
describe the relationship between the applied body forces and the consequent accelerations.

3.2.1. Kinematics

For Kinematic modeling, two frames are considered, as shown in Figure 2: the Earth
Frame and the Body Frame. The relationship between the Earth Frame and the Body Frame
is defined by the use of X, Y, and Z axes in the body-fixed frame, where O represents the
center of mass. The X axis points toward rotor 1, the Y axis toward rotor 4, and the Z axis
points upwards. The linear position and orientation of the Body Frame relative to the Earth
Frame are expressed as three translations (X, Y, Z) and three Euler angles (roll, pitch, yaw-φ,
θ, ψ). The linear velocities of the UAV in the body frame are denoted by (U, V, W), while
(p, q, r) represent the angular rates with respect to the Body Frame. The rotation matrix
between the Earth Frame and Body Frame is provided below (c: cos, s: sin).

R =

cψcθ −sψcθ + cψsθsφ sψsφ + cψsθcφ
sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ
−sθ cθsφ cθcφ

 (1)

By using the rotation matrix above, any point on the Body Frame can be expressed in
the Earth Frame. An additional transformation matrix is required for the angular rates to
transform the angular rates (p, q, r) in the body frame to the angular velocities (

.
φ,

.
θ,

.
ψ ) in

the inertial frame:

Rr =

1 0 −sin θ
0 cos φ sin φcos θ
0 −sin φ cos φcos θ

 (2)

3.2.2. Dynamics Model

In this research, the quadrotor model is regarded as a rigid body with a concen-
trated point mass, featuring four rotors symmetrically positioned around its center of
mass [19]. The control architecture of quadrotor is given by Figure 3. By employing New-
ton’s equations of translational and rotational motion, we can derive a set of six equations,
as described below [1,20]:

..
x= (sinψsinφ + cosψsinθcosφ ) Fz

m +Dx
m

..
y= (−cosψsinφ + sinψsinθcosφ) Fz

m +
Dy
m

..
z= −g + (cosθcosφ ) Fz

m +Dz
m

..
φ=

(Iyy−Izz )
.
θ

.
ψ−Jr

.
θωr+τx

Ixx
..
θ=

(Izz−Ixx )
.
φ

.
ψ+Jr

.
φωr+τy

Iyy

..
ψ=

(Ixx−Iyy )
.
φ

.
θ+τz

Izz

(3)

where ‘m’ signifies the mass of the quadrotor, and Ixx Iyy, and Izz denote the inertial compo-
nents along the x , y, and z directions in frame B. The term Fz represents the vertical thrust
along the Z-axis. τx, τy, and τz represent the torques associated with the thrust difference
of each rotor pair. Additionally, Dx, Dy, and Dz indicate the drag forces corresponding
to velocities in the X, Y, and Z directions. Jr shows the rotor inertia, and ωr is the overall
speed of the rotor, as defined below:

ωr = −ω1 + ω2 − ω3 + ω4 (4)
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The quadrotor input controls are given by

u1 = b
(
ω2

1 + ω2
2 + ω2

3 + ω2
4
)

u2 = b
(
ω2

4 − ω2
2
)

u3 = b
(
ω2

3 − ω2
1
)

u4 = b
(
ω2

2 + ω2
4 − ω2

1 − ω2
3
) (5)

The relations between Fz , τx, τy, τz and each rotor’s angular speeds can be obtained
by analyzing the free body diagram of the model in Figure 2. The terms ω1, ω2, ω3, and ω4
represent the angular speeds of the four rotors, b represents thrust factor, d represents drag
factor, and l represents the length of each quadrotor’s arm. The following matrix shows the
relationships between Fz ,τx, τy, τz and the angular velocities of the four propellers:


Fz
τx
τy
τz

 =


b b b b
0 −lb 0 lb

−lb 0 lb 0
d −d d −d




w2
1

w2
2

w2
3

w2
4

 (6)

The dynamic model has the potential to be simplified and expressed as a set of
nonlinear dynamic equations, which can be characterized as follows:

..
X = (X) + g(X)u (7)

where u and X ϵ R4 are, respectively, the input and state vector, given as follows:

u = [u1u2u3u4]
T (8)

X = [X1X2X3X4]
T =[zφθψ]T (9)

The matrices representing the nonlinear dynamic function, denoted as f (X), and the
nonlinear control function, denoted as g(X), can be written as follows:

f (X) =


−g

.
θ

.
ψa1 −

.
θa2Ωd.

θ
.
ψa3 +

.
φa4Ωd.

θ
.
φa5



g(X) =


uz

1
m 0 0 0

0 b1 0 0
0 0 b2 0
0 0 0 b3


(10)

with the following abbreviations:

a1 =
(

Iyy − Izz/ Ixx) , a2 = Jr/Ixx, a3 =
(

IZZ − Ixx)/Iyy , a4 = Jr/Iyy,
a5 =

(
Ixx − Iyy/ Izz),

b1 = l/Ixx, b2 = l/Iyy, b3 = l/Izz, uz = (cos φcos θ).

Given the well-known values of all system parameters, the nominal representation of
nonlinear systems can be articulated as follows:

..
X = f0(X) + g0(X)u (11)

where f0 and g0 are the nominal value of f and g, respectively.
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In our case, we are interested in the uncertainties in thrust and lift coefficients, as well
as inertial moments, which pose challenges in accurately characterizing the behavior of
quadrotors. These uncertainties can arise due to various factors. For thrust coefficients,
changes in environmental conditions, such as temperature and air density, can affect
thrust production.

In addition, environmental factors like wind gusts and turbulence can introduce
variations in lift coefficients during flight, and surface contamination or damage to the
airframe can impact lift generation.

The inertial moments depend on the distribution of mass within the quadrotor. Ir-
regularities or asymmetry in mass distribution can lead to variations in the moments of
inertia. In windy conditions, changes in the distribution of lift and drag forces on the
vehicle may affect its rotational behavior. inertial moments manifest in different axes,
corresponding to yaw, pitch, and roll motions. Wind-induced moments can lead to changes
in the quadrotor’s orientation and rotation around these axes, affecting its overall stability.

3.3. Robustness Analysis Using Wind Gust Model

Wind gusts are intricate physical phenomena commonly represented using either de-
terministic models [22] or stochastic models [23]. The latter models assume that turbulence
behaves as a stationary Gaussian random process, which is a prevalent assumption. The
stationary nature implies that turbulence extends infinitely in duration, while the Gaussian
process pertains to the probability of encountering a specific gust velocity at a given time. A
stochastic approach employed in modeling wind gusts is the Power Spectral Density (PSD).
In the PSD atmospheric turbulence model, it is presumed that the turbulence’s intensity
is significantly influenced by various factors and can change due to weather conditions,
flight altitude, and temperature gradients [24]. Wind gust signals are generated by passing
white noise through a shaping filter. In the literature, two primary shaping filters can be
identified: the Dryden filter and the Von Karman filter. Given its simpler form, we opt to
use the Dryden filter in this study. The filters employed to generate the Dryden spectral
model are provided in [25,26], as follows:

Hu(s) = ∆u
Nw

= σu

√
2Lu
πv

1
1+ Lu

v S

Hv(s) = ∆v
Nw

= σv

√
Lv
πv

1+
√

3Lv
v S

(1+ Lv
v S)

2

Hw(s) = ∆w
Nw

= σw

√
Lw
πv

1+
√

3Lw
v S

(1+ Lw
v S)

2

(12)
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where Nw represents white noise, v signifies the relative velocity of the UAV quadrotor
concerning the airflow, and [∆u, ∆v, ∆w]T represents alterations in body linear velocities
due to wind gusts. The turbulence intensities (σu, σv, σw) and the turbulence scale
lengths (Lu, Lv, Lw) provide descriptions of the wind gust characteristics. In regions with
low altitude (where the altitude is less than 1000 feet), the turbulence scale lengths and
intensities are defined as follows:

Lw = h, Lu = Lv =
h

(0.177 + 0.000823h)1.2 (13)

σw = 0.1w20,
σu

w
=

σv

w
=

1

(0.177 + 0.000823h)0.4 (14)

In this paper, we consider a standard wind speed of 2.4 m/s, which corresponds to
Beaufort Scale 3, and an altitude of 2 m. Here, h represents the height above the ground,
and W20 denotes the wind speed as per the Beaufort Scale.

4. Control Design

In this paper, two categories of controllers are investigated: model-based controllers
and FLCs. For the former, a Backstepping controller is implemented and validated. For
the latter, two FLCs are considered: Type 1 and Type 2. The control approaches with and
without the model are implemented and validated on a trajectory tracking problem using a
quadrotor. Figure 4 shows the global model proposed controllers’ system for a quadrotor.
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4.1. Backstepping Controller

The control objective is to develop a suitable control law for the system [8], allowing
the state vector X of the quadrotor system to adhere to a predetermined reference trajec-
tory vector Xd. The following section provides an overview of the Backstepping control
approach designed for the quadrotor system:
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Step 1: First, the tracking error is defined.

e1 = Xd − X (15)

where Xd is a desired trajectory specified by a reference model. Then, the derivative of the
tracking error can be represented as

.
e1 =

.
Xd −

.
X (16)

The first Lyapunov function is chosen as

V1(e1) =
1
2

eT
1 e1 (17)

The derivative of V1 is

.
V1(e1) = eT

1
.

e1 = eT
1

( .
Xd −

.
X
)

(18)

where
.

X can be viewed as a virtual control. The desired value of virtual control α, known
as a stabilizing function, can be defined as follows:

α =
.

Xd + k1e1 (19)

where k1 is a positive constant. By substituting the virtual control by its desired value from
Equation (17), we obtain

.
V1(e1) = −k1eT

1 e1 ≤ 0 (20)

Step 2: The deviation of the virtual control from its desired value can be defined as

e2 =
.

X − α =
.

X −
.

Xd − k1e1 (21)

The derivative of e2 is expresses as

.
e2 =

..
X − .

α = f0(X) + g0(X)u + L −
..

Xd − k1
.

e1 (22)

The second Lyapunov function is

V2(e1, e2) =
1
2

eT
1 e1 +

1
2

eT
2 e2 (23)

The derivative equations of (23) are defined as

.
V2(e1, e2) = eT

1
.

e1 + eT
2

.
e2 = eT

1

.
(X d −

.
X ) + eT

2 (
..
X − .

α ) = eT
1 (−e2 − k1e1) + eT

2 ( f0(X) + g0(X)u + L −
..

Xd − k1
.

e1 ) =

−k1eT
1 e1 + eT

2 (−e1 + f0(X) + g0(X)u + L −
..

Xd − k1
.

e1
(24)

Step 3: Since the system dynamics and the external disturbance are well known, and
g0(X) ̸= 0, an ideal Backstepping can be obtained as

u = g0(X)−1 (e1 + k1
.

e1 +
..

Xd − f0(X)− L − k2e2 (25)

where k2 is a positive constant, and the term k2e2 is added to stabilize the tracking error.
Substituting (25) into (24), the following equation can be obtained:

.
V2(e1, e2) = −k1eT

1 e1 − k2eT
2 e2 (26)

where
.

V2(e1, e2) ≤ 0,
.

V2(e1, e2) is a negative semi-definite. So, the Backstepping controller
in (25) will stabilize the system.
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4.2. Type-1 Fuzzy Logic Controller

Fuzzy logic offers straightforward computational capabilities and is widely regarded
as one of the most adaptable controllers. In this paper, first, a Takagi Sugeno Type-1 FLC
controller is proposed for quadrotor trajectory tracking, as shown in Figure 5.
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This paper introduces and compares four different variations for controlling roll, pitch,
yaw, and height through simulation and careful observation.

The membership functions in Figure 6 are tuned based on the range sensors and the
authors’ experience. Increasing the number of membership functions can provide good
accuracy; however, the computational time will increase. Then, the shape and number of
membership functions should be selected to maintain a suitable trade-off between precision,
robustness, and computational time. Table 1, shows the quadrotor rule base.
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Table 1. Quadrotor rule base.

Height

de

e
NB N Z P PB

N GUM GD GD S GU

Z GDM GD S GU GUM

P GD S GU GUM GUM
Where: N: Negative, Z: Zero, P: Positive, GUM: Go Up Much, GU: Go Up, S: Stand, GDM: Go Down Much,
GD: Go Down, NB: Negative Big, PB: Positive Big.

For quadrotor control, the triangular, trapezoid, and Gaussian membership functions
are used. The input range is [−2, 2], whereas the output variable lies in the range of
[−15, 15]. The membership for each controller is as shown in Figure 6a,b. Table 2 presents
the parameters of output.
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Table 2. Parameters for output fuzzy controller.

Variable GDM GD S GU GUM

Output −10 −8 0 8 10

4.3. Type-2 Fuzzy Logic Controller

A Type-2 fuzzy logic system or controller shares many fundamental concepts with a
Type-1 FLC. In fact, a Type-2 fuzzy logic system closely resembles a Type-1 system in terms
of membership functions, fuzzy rules, fuzzification, inference, and defuzzification [27].
There are only two key distinctions: firstly, in the Type-2 FLC, the membership functions
are three-dimensional, as depicted in Figure 7. This third dimension represents the value of
the membership function at each point within its two-dimensional domain, known as the
footprint of uncertainty (FOU) [28]. Secondly, the Type-2 FLC necessitates an additional
step involving type reduction.
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To create a Type-2 FLC, we expanded upon the initially suggested Type-1 controller
by leveraging the IT2-FLS v1.1 Matlab/Simulink Toolbox (Figure 8). The inputs, rule base,
and outputs closely mirror those of the Type-1 FLC discussed in Section 4.2.
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The membership functions of the Type-2 fuzzy logic controller inputs are represented
below (Figure 9a,b):
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Similar to the approach taken for the Type-1 FLC, we propose a set of 15 IF-THEN
fuzzy rules for the Type-2 FLC. The output processing block utilizes the Takagi–Sugeno
“SOM/PROD” inference method and adopts the “NT” type for the reduction and defuzzifi-
cation process.

4.4. PID-Fuzzy Logic Controller

The main drawback of the FLC approach is the tuning of membership parameters of
input and output when a significant number of rules is considered. Using human expertise
is efficient for a few number of rules. However, when the number of rules increases, it
becomes very difficult to tune the FLC; thus, for the solution, we propose to use a PID-FLC
optimized by a genetic algorithm.

4.5. PID-FLC with GA Tuning

In the figure below (Figure 10), an overall summary diagram explains the principal
of the optimal PID-Type-1 FLC controller and PID-Type-2 FLC controller based on GA
parameter optimization. Red arrow indicates that the PID parameters are optimized
by GA.
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4.6. Optimal Type-1 and Type-2 FLC with PID Controller

The primary benefit of the FLC is its compatibility with a conventional PID controller.
As the name implies, this control technique combines aspects of two control methods: fuzzy
logic and PID [2].
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The PID controller finds extensive application across various domains. Its merits
include the elimination of steady-state errors, overshooting, reduction in settling time,
and enhancement of system stability. The mathematical equation for the PID controller is
presented below:

u = Kpe + Ki

∫ t

0
e dt + Kd

d
dt

e (27)

To achieve the desired output in the control of the quadrotor, a combination of three
PD controllers and one PID controller is employed. Below, we provide a description of
each controller:

u1 = Kp(φd − φ) + Kd(
.

φd −
.

φ)

u2 = Kp(θd − θ) + Kd(
.

θd −
.

θ)

u3 = Kp(ψd − ψ) + Kd(
.

ψd −
.

ψ)

u4 = Kp(zd − z) + Ki
∫ t

0 z + Kd(
.

zd −
.

z)

(28)

where u1, u2, u3, and u4 are the control inputs and Kp, Kd, and Ki are, respectively, the
proportional gain, the derivative gain, and the integral gain.

4.7. Genetic Algorithm
4.7.1. Definition and Schemes

GAs are search processes that operate according to the principles of natural selection
and genetics. A basic GA encompasses three key operations: Selection, Genetic Operations,
and Replacement, as illustrated in the figure below, representing a typical GA cycle [25].

Genetic algorithms involve the evolutionary cycle of a series of genes (Figure 11),
referred to as a chromosome; this symbolizes a potential solution to the problem at hand.
Each gene within the chromosome corresponds to a component of the solution pattern.
The prevalent method for representing a solution as a chromosome involves employing a
string of binary digits, where each bit in the string acts as a gene. The transformation of
the solution into the binary bit string is termed coding. The choice of a particular coding
scheme is application-dependent. Subsequently, the solution bit strings undergo decoding
to facilitate their evaluation through a fitness measure [29].
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The motivation for employing a genetic algorithm in the control system of a quadrotor,
in particular for the optimization of PID and FLC parameters, came from the fact that
the latter exhibit complex, non-linear dynamics, making it difficult to determine optimal
control parameters analytically [30]. In addition, GAs are highly effective in handling
complex non-linear optimization problems, without requiring a detailed understanding of
the system’s mathematical model; they are particularly robust in addressing uncertainties
and adapt well to variations, providing a means to optimize control parameters for different
operating conditions. On the other hand, PID and FLC controllers often involve setting
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several parameters to balance different control objectives, such as stability, responsiveness,
and robustness. Thus, GAs support multi-objective optimization, enabling the exploration
of a solution space that optimally balances these conflicting objectives. In addition, GAs are
suitable for offline optimization, where the algorithm can iteratively explore the parameter
space without the need for real-time computation [31].

There are many other optimization algorithms that are successfully applied to tune
FLC parameters, such as the hybrid spiral bacteria search algorithm [32], the hybrid gray
whale optimization approach [33], and many others. These approaches are good in terms
of computation time, which is not really important in our case.

4.7.2. Advantages and Disadvantages of Using GAs

The following table (Table 3) summarizes the advantages and disadvantages of using
genetic algorithms in the control system optimization of a quadrotor as compared with
stated algorithms such as the hybrid spiral-bacterial foraging algorithm and hybrid Grey
Wolf–Whale optimization approach.

Table 3. Comparison of GA and other optimization approaches.

Criteria Genetic Algorithm Hybrid Spiral-Bacterial
Foraging

Hybrid Grey Wolf-Whale
Optimization

Advantages
Global Search Capability ✓ ✓ ✓
Adaptability to Complex Systems ✓ ✓ ✓
Multi-Objective Optimization ✓ ✓ ✓
Empirical Optimization ✓ ✓ ✓
Offline Optimization ✓ ✓ ✓
Solution Diversity ✓ ✓ ✓
Disadvantages
Computational Intensity ✓ ✓(Varies) ✓(Varies)
Parameter Tuning ✓ ✓(Varies) ✓(Varies)
No Guarantee for Global Optimality ✓ ✓ ✓
Real-Time Applicability for FLC ✓ ✓ ✓

Note that the checkmarks (✓) indicate whether the respective algorithm has an advantage or disadvantage for a
specific criterion. The “Varies” notation indicates that the performance may depend on specific implementations
or problem instances.

4.8. Optimization Strategy of Using GA

Efficiency in terms of the noisy or stochastic objective function is, in this paper,
achieved using the proposed PID-Type-1 FLC as well as the PID-Type-2 FLC, automatically
tuned using the genetic algorithm. The PID-Type-1 FLC and PID-Type-2 FLC with GA
optimization are shown in Figure 12.

As can be seen from previous PID FLC controllers, including the Z-Controller,
φ-Controller, θ-Controller, and ψ-Controller, sixteen (16) parameters should be tuned.
For this purpose, a Genetic Algorithm (GA) was used to optimize these parameters in
order to minimize the Root Mean Square Error (RMSE) of the trajectory tracking using the
quadrotor. In this case, the fitness function can be given by

f (K) =
√
(Xd − X)2 + (Yd − Y)2 + (Zd − Z)2 (29)

where K = [K1, K2, K3, . . . , K16].
The optimization problem is solved with a genetic algorithm:

Argmin
K = 1 : 12

√
(Xd − X)2 + (Yd − Y)2 + (Zd − Z)2 (30)

GA optimization steps are given in the diagram below (Figure 13):
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5. Results and Discussion

To evaluate the performances of the proposed controllers, many simulation scenarios
are considered. The quadrotor parameters used for simulation are taken from [1] and are
listed in Table 4.

Table 4. Description of the quadrotor parameters [1].

Symbol Description Value

Ix Moment of inertia X axis 0.007 kgm2

Iy Moment of inertia Y axis 0.007 kgm2

Iz Moment of inertia Z axis 0.012 kgm2

Jr Rotor moment of inertia 6.5 × 10−5 kgm2

b Thrust factor 4.13 × 10−5 Ns2

d Drag factor 8.5 × 10−7 Nms2

l Distance to the center of the quadrotor 0.17 m
m Masse of quadrotor 0.68 kg
g Gravitation constant 9.81 m/s2

The proposed algorithms are validated using a trajectory tracking scenario (Figure 14).
The quadrotor (shown in red) should accurately follow the predefined trajectory. Three
controllers are implemented, validated, and compared using realistic scenarios.
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5.1. Path Tracking for Quadrotor Using Backstepping Controller

The first step covers quadrotor trajectory tracking; the vehicle is initialized and then
takes off from the initial position. The Backstepping controller is generally capable of
piloting the quadrotor to the trajectory reference and stabilizing the altitude of the vehicle
in a few seconds after takeoff, as shown in the figures below (Figures 15 and 16).

The obtained results of the quadrotor trajectory tracking using the Backstepping
controller are illustrated in Figures 15–18. According to the obtained results, the UAV
accurately follows the desired trajectory (see Section 5.4). This result is confirmed by
Figures 17 and 18, where very small errors following x, y, z and θ, φ, ψ are obtained.
Figures 15 and 16 illustrate the evolution of the velocity and input command of the quadro-
tor, respectively.
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Figure 15. Quadrotor commands of Backstepping control.
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Figure 16. Motor velocities of Backstepping control.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 32 
 

 

accurately follows the desired trajectory (see Section 5.4). This result is confirmed by Fig-
ures 17 and 18, where very small errors following 𝑥𝑥,𝑦𝑦, z and 𝜃𝜃,𝜑𝜑,ψ are obtained. Figures 
15 and 16 illustrate the evolution of the velocity and input command of the quadrotor, 
respectively. 

 
Figure 17. 𝑥𝑥, 𝑦𝑦, z errors evolution of Backstepping control. 

 
Figure 18. Quadrotor angles of Backstepping control. 

5.2. Path Tracking for Quadrotor Using Type-1 Fuzzy Logic Controller 
The results of trajectory tracking using the Type-1 FLC are presented in this section. 

The first test illustrates the accurate tracking of the trajectory. The UAV is tested with dif-
ferent initial positions before being piloted autonomously by simulation. In addition, the 
quadrotor is tested using a trajectory that has a turn and a climb, with various initial po-
sitions, to observe the ability to follow a given trajectory. The figures below show the ob-
tained results. 

The input response and velocity evolution provided by the Type-1 FLC are illustrated 
in Figures 19 and 20, respectively. According to the results illustrated above for quadrotor 
navigation using the Type-1 FLC, the quadrotor accurately follows the desired trajectory 
(see Section 5.4). These results are confirmed by the small value of error given in Figures 
21 and 22. 

0 2 4 6

Time [sec]

-2

0

2

4
X evolution

0 2 4 6

Time [sec]

0

2

4
Y evolution

0 2 4 6

Time [sec]

0

1

2

3
Z evolution

0 2 4 6

Time [sec]

-0.5

0

0.5
error__X

0 2 4 6

Time [sec]

-0.5

0

0.5
error__Y 

0 2 4 6

Time [sec]

-0.2

0

0.2

0.4
error__Z  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [sec]

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025
Phi, Theta, Psi evolution[deg]

Phi

Theta

Psi

Figure 17. x, y, z errors evolution of Backstepping control.
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5.2. Path Tracking for Quadrotor Using Type-1 Fuzzy Logic Controller

The results of trajectory tracking using the Type-1 FLC are presented in this section.
The first test illustrates the accurate tracking of the trajectory. The UAV is tested with
different initial positions before being piloted autonomously by simulation. In addition,
the quadrotor is tested using a trajectory that has a turn and a climb, with various initial
positions, to observe the ability to follow a given trajectory. The figures below show the
obtained results.

The input response and velocity evolution provided by the Type-1 FLC are illus-
trated in Figures 19 and 20, respectively. According to the results illustrated above for
quadrotor navigation using the Type-1 FLC, the quadrotor accurately follows the desired
trajectory (see Section 5.4). These results are confirmed by the small value of error given in
Figures 21 and 22.
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Figure 19. Quadrotor commands of Type-1 FLC.
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Figure 20. Motor velocities of Type-1 FLC.
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Figure 21. x, y, z error evolution of Type-1 FLC.
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Figure 22. Quadrotor angles of Type-1 FLC.
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5.3. Path Tracking for Quadrotor Using Type-2 Fuzzy Logic Controller

In this section, we present simulation results to evaluate the Type-2 FLC in a trajectory
tracking scenario. The proposed controller is validated according to the desired path
navigation problem; the Type-2 FLC shows good performance even with the complexity of
the quadrotor parameters, as can be seen in Figures 23–27.
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Figure 23. Quadrotor commands of Type-2 FLC.
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Figure 24. Motor velocities of Type-2 FLC.
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Figure 25. x, y, z error evolution of Type-2 FLC.
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5.4. Comparison between Proposed Controllers (Backstepping, Type-1 FLC, and Type-2 FLC)

In this section, we compare the three controllers for trajectory tracking (Figure 27) to
confirm the results given in the figures above for each model. The three controllers give
quite similar results for trajectory tracking, with good accuracy.
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5.5. Path Tracking for Quadrotor Using PID-Type-1 FLC and PID-Type-2 FLC Controllers with
GA Tuning

The performance of the FLC controller is well known; it does not require any system
modeling and is able to treat uncertainties. Furthermore, the FLC controller is robust and
easy to implement. However, it can be difficult to accurately tune the fuzzy rules (in our
case, 15 fuzzy rules). As a solution for this problem, and to ensure the quadrotor is able to
track the predefined trajectory with high precision, PID-Type-1 FLC and PID-Type-2 FLC
controllers are implemented, validated, and compared in this section. Moreover, to obtain
optimal performance, the PID parameters are optimized using GA (Figure 12); the results
of optimization are given in Table 5, with nine parameters tuned with GA.

Table 5. Parameters Results with GA optimization.

Controller Parameters PID-Type-1 FLC PID-Type-2 FLC

Z
K1
K2
K4

18.20
11.98
0.47

13.8
3.98
0.6

φ
K5
K6

2
1.5

2.24
2.86

θ
K9

K10
2

1.4
0.19

66.42

ψ
K13
K14

2
15.1

−1.79
5.87

5.5.1. PID-Type-1 FLC with GA Tuning Results

From the simulation results, the PID-Type-1 FLC controller using GA optimization
provides good performances for the trajectory tracking, as confirmed by Figures 28 and 29.
The position and orientation errors are illustrated, respectively, with small errors obtained.
Figures 30 and 31 illustrate the input controller (quadrotor command) and the velocity
evolution. We notice some chattering in the input controller when using GA optimization.
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Figure 29. Quadrotor angles of PID-Type-1 FLC controller with GA.
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Figure 30. Quadrotor commands of PID-Type-1 FLC controller with GA.
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Figure 31. Motor velocities of PID-Type-1 FLC controller with GA.

5.5.2. PID-Type-2 FLC with GA Tuning Results

In this section, we present simulation results to evaluate the proposed controller (PID-
Type-2 FLC) with GA parameter tuning. Figures 32 and 33 illustrate the pose errors (position
and orientation, respectively). UAV commands and motor velocities are given, respectively,
in Figures 34 and 35; as can be seen, the chattering effect is reduced significantly with the
Type-2 FLC controller. As shown in Figure 36, the Type-2 FLC maintains good performance.
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Figure 36 illustrates the comparison between Type-1 FLC and Type-2 FLC controllers
using GA optimization. The Type-2 FLC with GA optimization performs better than the
Type-1 FLC controller, due to its robustness in optimizing these parameters.
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Figure 34. Quadrotor commands of PID-Type-2 FLC controller with GA.
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Figure 35. Motor velocities of PID-Type-2 FLC controller with GA.
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5.6. Robustness Analysis

In this section, we consider a significant disturbance using a wind gust model. Simula-
tions have been conducted to assess the robustness and efficacy of the proposed controller
in tracking a specified trajectory. Two distinct simulation scenarios involving varying wind
gusts are taken into account. The wind gust model outlined in Section 3 is employed to gen-
erate wind velocity along the three axes—lateral, longitudinal, and vertical. Subsequently,
these velocities are treated as external disturbances affecting the translational velocity of
the UAV [25].

In the first scenario, the wind gust model parameters are Lu = Lv = 23.568, Lw = 3,
σu = σv = 0.48, and σw = 0.14, and a typical wind speed of 2.4 m/s is considered.

In the second scenario, the parameters of the wind gust model are Lu = Lv = 23.568,
Lw = 3, σu = σv = 0.68, and σw = 0.34, and a typical wind speed of 2.4 m/s is considered.

The figures (Figure 37) presented below relate to scenario 2.
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Figure 37. Wind velocity for scenario 2.



Sensors 2024, 24, 6678 26 of 29

The comparison between the three controllers, Backstepping, PID-Type-1 FLC and PID-
Type-2 FLC, with and without GA tuning, is illustrated in Table 6. The Root Mean Square
Errors (RMSEs) are compared for the same trajectory (Figures 27, 36 and 38) using several
scenarios. As illustrated in Table 6, good precision is obtained by the optimal controller (PID-
Type-2 FLC), even with the presence of significant wind disturbance. This result is justified
by the robustness of the Type-2 FLC and optimality of the Genetic Algorithm. According
to the results illustrated in Figure 38, the Type-2 FLC provides accurate tracking of the
desired trajectory compared to the Backstepping controller and Type-1 FLC. This result is
confirmed by Figures 39–41, where the proposed approach provides the best accuracy.
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Figure 38. Quadrotor trajectory for scenario 2.
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Figure 39. The errors of X, Y, and Z for PID-Type-2 FLC scenario 2.

Table 6. Parameters for outputs of the proposed controllers (RMSE).

Controllers Approaches Z Y

Backstepping

Without wind 2.17 4.29

Scenario 1 2.32 5.84

Scenario 2 3.69 9.50
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Table 6. Cont.

Controllers Approaches Z Y

PID-Type-1 FLC

Without wind 3.05 4.39

GA Optimization 2.10 4.29

Scenario 1 2.19 6.31

Scenario 2 6.87 7.65

PID-Type-2 FLC

Without wind 3.00 4.29

GA Optimization 2.30 3.90

Scenario 1 2.43 3.90

Scenario 2 3.25 4.16
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Figure 40. The errors of X, Y, and Z for PID FLC scenario 2.
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6. Conclusions

The present research investigated the nonlinear system quadrotor aerial vehicle’s
trajectory tracking issue. Three types of controllers were implemented, validated, and
compared. First, a model-based approach using a Backstepping controller; second, a
model-free control based on a PID FLC controller; and third, a PID-Type-2 FLC. The latter
is validated, firstly, using heuristic PID parameters and, secondly, using optimal PID
parameters based on GA. The proposed controllers PID FLC and GA-PID-Type-2 FLC are
compared on the same trajectory. Good precision was obtained by the proposed PID-Type-2
FLC. Furthermore, the proposed controller showed more robustness in the face of wind
disturbances and parameter uncertainties compared to the other approaches.
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