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Abstract: To enhance the performance of non-orthogonal multiple access (NOMA)-assisted integrated
sensing and communication (ISAC) systems in multi-user distributed scenarios, an improved Gaus-
sian Mixture Model (GMM)-based user clustering algorithm is proposed. This algorithm is tailored
for ISAC systems, significantly improving bandwidth reuse gains and reducing serial interference.
First, using the Sum of Squared Errors (SSE), the algorithm reduces sensitivity to the initial cluster
center locations, improving clustering accuracy. Then, direction weight factors are introduced based
on the base station position and a penalty function involving users’ Euclidean distances and sensing
power. Modifications to the EM algorithm in calculating posterior probabilities and updating the
covariance matrix help align user clusters with the characteristics of NOMAISAC systems. This
improves users’ interference resistance, lowers decoding difficulty, and optimizes the system’s sens-
ing capabilities. Finally, a fractional programming (FP) approach addresses the non-convex joint
beamforming design problem, enhancing power and channel gains and achieving co-optimizing
sensing and communication signals. The simulation results show that, under the improved GMM
user clustering algorithm and FP optimization, the NOMA-ISAC system improves user spectral
efficiency by 4.3% and base station beam intensity by 5.4% compared to traditional ISAC systems.

Keywords: integrated sensing and communications; non-orthogonal multiple access; user clustering;
beamforming design; fractional programming

1. Introduction

With the rapid development of technologies such as the Internet of Things (IoT),
augmented reality (AR), and virtual reality (VR), traditional communication methods can
no longer meet the growing demands for interaction. Users now expect more immersive
and intuitive ways to access and communicate information beyond simple texts and images.
This shift imposes higher requirements on next-generation wireless communication systems
like B5G (Beyond Fifth Generation) and 6G (Sixth Generation) [1]. In addition to offering
higher data transmission rates and more reliable mobile connections, next-generation
wireless systems will enable emerging applications such as smart cities, VR, smart homes,
and intelligent transportation. Integrated sensing and communications (ISAC) is widely
regarded as one of the practical solutions to achieve this goal [2]. ISAC integrates wireless
communication and radar sensing, sharing the same spectrum resources and hardware
platforms [3], thus alleviating the issue of spectrum scarcity. Therefore, exploring and
applying ISAC technology holds significant social, economic, and technical value.

Non-orthogonal multiple access (NOMA), as one of the critical technologies in 5G,
allows users to share time–frequency resources through power domain multiplexing [4].
The transmitter superimposes the signals of different users on the same frequency band and
distinguishes them by allocating power and coding. This non-orthogonal signal superposi-
tion effectively improves spectrum efficiency, meeting multi-user access requirements while
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reducing system complexity [5]. The receiver uses successive interference cancellation (SIC)
to process multiple users’ signals sequentially, eliminating interference and decoding them
accordingly. Many studies are currently focusing on applying NOMA in integrated sensing
and communication (ISAC). In [6], the NOAM-ISAC framework was first established, and
NOMA-assisted joint radar and multicast–unicast communication (Rad-MU-Com) was
proposed. A hybrid multicast–unicast message transmission between radar and communi-
cation users was enabled using a multiple-input multiple-output (MIMO) dual-function
radar-communication (DFRC) base station. In [7], the NOMA-based ISAC framework
optimized beamforming design, enhancing communication throughput and sensing power.
In [8], the NOMA-based joint communication, sensing, and multi-layer computing (JCSMC)
framework optimized resource allocation for efficient computation offloading.

These studies emphasize the improvement of the integrated sensing and communi-
cation (ISAC) system performance through NOMA; however, the system performance
under NOMA communication largely depends on the interference intensity between users
and the difficulty of SIC decoding, which relies on user clustering [9]. The authors of [10]
reduce user interference through an efficient user clustering algorithm considering dif-
ferent transmission power scenarios and provide a robust power allocation (PA) solution
under imperfect CSI assumptions. The authors of [11] propose a low-complexity learning-
based user clustering method using an improved mean-shift clustering algorithm, which
effectively utilizes the degrees of freedom in the system to form NOMA clusters and signif-
icantly enhances performance. The authors of [12] investigate user clustering and power
control in MISO-NOMA networks. The study proposes a two-step user clustering and
power control algorithm, with the proposed K-means-based iterative power control scheme
significantly outperforming other reference methods regarding power consumption and
energy efficiency. The authors of [13] address the issues of high node death rates and en-
ergy consumption in energy-efficient clustered routing communication for wireless sensor
networks, proposing an energy-efficient clustered routing algorithm based on an energy
iterative model and swarm optimization. The authors of [14] employ Gaussian Mixture
Models (GMMs) for the unsupervised clustering of received signals, optimizing decision
boundaries to improve bit error rate (BER) performance.

However, the clustering algorithms in the literature above are rarely applied in NOMA-
ISAC systems. The K-means algorithm requires each cluster to have a regular shape, and
its high sensitivity to initial values, like that of the GMM algorithm, makes it challenging to
significantly improve the performance of NOMA-ISAC systems. Moreover, most existing
user clustering algorithms [15] group users with close Euclidean distances, which contra-
dicts the NOMA clustering approach that aims to maximize differences in user channel
gains. The authors of [16] introduce a dynamic user clustering method based on CDA and
COA algorithms, using a joint optimization approach to maximize total rate and sensing
capability. Although this algorithm has some applications in ISAC, it is not closely related
to sensing, and very few user clustering algorithms are applied in NOMA-ISAC systems.
To date, no scholars have employed clustering algorithms to optimize the performance of
integrated sensing and communication systems in multi-user distribution scenarios. This
paper proposes a reliable user clustering algorithm suitable for NOMA-ISAC systems.

To further enhance the performance of the integrated sensing and communication
(ISAC) system and address the non-convex problem of beamforming design, this paper
utilizes a dual-function base station that can simultaneously achieve communication and
sensing functions. The improved Gaussian Mixture Model (GMM) clustering algorithm
forms strip-shaped clusters that adapt to NOMA-ISAC, simultaneously simplifying the
objective function. Additionally, due to the difficulty in obtaining stable solutions for the
multi-rate problem involved in the objective function and the high coupling of multiple
objective variables, to address the integrated sensing and communication beamforming
design problem, fractional programming is used to transform the maximization of the
logarithmic and fractional composite spectral efficiency problem into a series of convex
problems. After obtaining the simplified objective function using the cluster splitting
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algorithm, a suboptimal solution to the original objective function can be obtained by fixing
the auxiliary variables [17] and taking the partial derivatives of the reconstructed problem.

The main contributions of this paper can be summarized as follows:
An improved GMM user clustering algorithm is proposed for multi-user NOMA-

assisted ISAC systems as follows:

1. Sensitivity to initial centroid positions is reduced by computing the Sum of Squared
Errors (SSE).

2. Directional weight factors and penalty functions are introduced to ensure the algo-
rithm forms strip-like clusters suited to the NOMA-ISAC system.

3. The posterior probability in the GMM algorithm is modified, and an adaptive co-
variance matrix update mechanism is used to optimize the coordination between
communication and sensing.

4. The improved GMM user clustering algorithm reduces inter-user interference in
traditional multiple-access methods and increases bandwidth reuse gain.

5. Fractional programming handles the joint beamforming design for ISAC systems.
Converting the maximization of spectral efficiency involving logarithmic and frac-
tional terms into a series of convex problems achieves more effective system power
gain and channel gain.

2. System Model

The integrated sensing and communication system model assisted by NOMA is illus-
trated in Figure 1, featuring a dual-functional base station that simultaneously performs
communication and sensing. The base station is equipped with N antennas, utilizing a Uni-
form Linear Array (ULA) to serve K single-antenna users and Q sensing targets, ensuring
minimal interference between antenna units and maintaining good phase alignment. The
spacing between each antenna is set to half the wavelength. Users are unevenly distributed
around the base station, while the sensing targets are considered line-of-sight links relative
to the base station. All users are eventually divided into M clusters, with the m − th cluster
denoted as Cm, m ∈ {1, 2, . . . , M}. |Cm| is the number of users within the m − th cluster
and satisfies |C1|+ |C2|, . . . ,+|CM| = K. After clustering, users within each cluster utilize
NOMA to share time–frequency resources. Users are distinguished through power multi-
plexing. Inter-cluster communication employs orthogonal multiple access (OMA). Each
cluster is orthogonal. Interference between clusters is ignored to simplify system analysis
and design.
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2.1. Communications Model

During downlink communication with NOMA, the signal received by the i − th user
um

i of the m − th cluster can be expressed as the following:

ym
i = hm

i ∑
i∈k

wm
i sm

i + ∑
ĩ∈|Cm |/{i}

hm
i wm

ĩ
sm

ĩ
+ ni (1)

where k = {1, 2, . . . , K}, wisi represents the superimposed signal transmitted by the base
station, wi denotes the beamforming vector of the user um

i , si denotes the information data
stream of the user um

i , hm
i denotes the channel gain from the base station to the user um

i ,
ĩ ∈ |Cm|/{i} denotes the remaining users other than the user um

i in the m − th cluster and
ni denotes additive Gaussian white noise with a variance of σ2.

In the system model of this paper, the link from the base station to the user is consid-
ered a line-of-sight (LOS) link. Therefore, the free-space path loss model is used as the path
loss model for the user, which is given explicitly by the following:

Γm
i = 32.5 + 36.7lgdm

i (2)

where dm
i represents the distance from the user um

i to the base station. Let the position of
the base station be denoted by b =

(
bx, by

)
and the position of the user um

i be denoted by
um

i =
(
ix, iy

)
, where

(
bx, by

)
and

(
ix, iy

)
denote the horizontal and vertical coordinates of

the base station and user um
i , respectively. Then, dm

i can be expressed as the following:

dm
i =

√
(bx − im

x )
2 +

(
by − im

y

)2
(3)

Without loss of generality, let the distances from the users in the m − th cluster to the
base station be sorted as dm

|Cm | >, . . . ,> dm
1 . The channel gain for users within the cluster

can thus be expressed as hm
1 >, . . . ,> hm

|Cm |. Based on the above channel gain condition, the
signal-to-interference-plus-noise ratio (SINR) for user um

i in cluster m is given as follows:

γm
i =

∣∣wm
i hm

i

∣∣2
i−1
∑

j=1

∣∣∣wm
j hm

i

∣∣∣2 + σ2
(4)

where
i−1
∑

j=1

∣∣∣wm
j hm

i

∣∣∣2 is the interfering signal that the SIC decodes and fails to eliminate. The

reachable rate of user um
i can be expressed as the following:

rm
i =

B
M

log2

1 +

∣∣wm
i hm

i

∣∣2
i−1
∑

j=1

∣∣∣wm
j hm

i

∣∣∣2 + B
M

σ2

 (5)

where B is the system bandwidth. The sum rate of all users is expressed as the following:

Rsum =
M

∑
m=1

|Cm |

∑
i=1

rm
i (6)

In NOMA communication, complex user channel conditions are one of the critical
factors affecting the sum rate. By increasing the channel gain difference between users
sharing the same channel, the difficulty of SIC decoding and user interference can be
reduced. This, in turn, improves the spectral efficiency for users.
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2.2. Sensing Model

In an ISAC system, the communication waveform can be used for user communication
and sensing detection. To achieve good sensing performance, the goal of the sensing system
is to maximize the sensing power under the condition of prior target information [16]. The
sensing power is expressed as follows:

p(θq) = aH(θq)Rwa(θq) (7)

where θq is the direction of the sensing target, a(θq) =
1√
N
[1, ej 2π

λ d sin(θq), . . . , ej 2π
λ (N−1)d sin(θq)]

T

is the steering vector in the direction of the target, and Rw = wiwH
i is the covariance matrix

of the transmitted signal. In the waveform design for sensing, this corresponds to designing
the covariance matrix of the transmitted signal [18].

Constant modulus constraints are typically introduced to improve transmitter ef-
ficiency and enable the radar’s nonlinear amplifiers to operate at maximum efficiency,
enhancing radar transmission performance. However, in practical operation, there may be
a conflict between radar detection and estimation performance. Therefore, the Peak Aver-
age Power Ratio (PAPR) is typically introduced to address more general energy constraint
issues. The mathematical definition of PAPR is as follows:

PAPR(W) =

max|W(n)|2
n

∥W∥2

N

≤ η (8)

where W = vec(w) ∈ CN×1, n = 1, 2, . . . , N. When η = 0, this corresponds to the constant
envelope constraint. When η = 1, the peak-to-average ratio is converted into the continuous
modulus constraint. The authors of [19] have verified that relaxing the constant envelope
constraint can yield better performance for the transmitted waveform. Moreover, the
peak-to-average constraint is more flexible than the constant modulus constraint, providing
more degrees of freedom for the sensing waveform.

3. Problem Description

In the ISAC system model, considering the trade-off between communication and
sensing performance, a trade-off factor ρ is introduced to balance the system’s performance
of communication and sensing. Under this condition, the joint waveform design problem
for the ISAC system can be described as follows:

F1 : max
wi ,υm

i ,rm
i

f
(
rm

i , wi
)
= ρ

M
∑

m=1

|Cm |
∑

i=1
υm

i rm
i + (1 − ρ) ∑

q∈Q
p(θq)

s.t. C1 : ri ≥ rmin,i, ∀i ∈ k

C2 :
M
∑

m=1
υm

i = 1, υm
i ∈ {0, 1}, i ∈ {1, 2 . . . , |Cm|}

C3 : WHW = Pt

C4 : WHEnW ≤ Ptη

N
, n = 1, 2, . . . , N

(9)

where ρ ∈ [0, 1] is the trade-off factor for balancing communication and sensing perfor-
mances. When ρ = 0, the system considers only sensing performance. When ρ = 1,
the system considers only communication performance. It is necessary to adjust the
trade-off factor to balance communication and sensing continuously. The sensing target
q ∈ Q = {1, . . . , Q}. C1 is the Quality of Service (QoS) constraint, ensuring the minimum
communication rate for each user, C2 ensures that each user belongs to only one cluster, C3
is the total transmission power constraint, Pt is the total transmit power of the antennas
and C4 is the PAPR constraint, addressing the peak-to-average ratio problem in the sensing
waveform. Because of the waveform design problem, F1 is a non-convex problem and is
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generally difficult to solve directly. This paper decouples the original objective function
through quadratic transformations and applies an improved Gaussian clustering algorithm
to cluster the users. This reduces the difficulty of SIC decoding and simplifies the objective
function. Fractional programming is then used to handle the beamforming design problem
at the base station, decoupling the objective function and reducing its computational com-
plexity. Finally, alternating iterative optimization is used to find the optimal variables and
obtain a suboptimal solution to the objective function.

4. Clustering Algorithm and Beamforming Design

In the communication field, user clustering can manage resources in the network and
enhance system fault tolerance. In non-orthogonal multiple access (NOMA), signals are
distinguished at the transmitter through power domain multiplexing, enabling the reuse of
time–frequency resources. Clustering users with significant channel gain differences can
effectively reduce SIC decoding difficulty and intra-cluster interference, thereby improving
system performance. Moreover, user clustering facilitates fair resource allocation, ensuring
each user receives appropriate communication resources. Therefore, clustering plays a
crucial role in overcoming the challenges faced by NOMA, so this section proposes an
improved Gaussian Mixture Model (GMM) clustering algorithm for user partitioning.

4.1. GMM Gaussian Mixture Model Clustering Algorithm
4.1.1. Basic Concepts of the GMM Algorithm

The Gaussian Mixture Model (GMM) is a probabilistic model that assumes all data
points are generated from a mixture of a finite number of Gaussian distributions. Each
Gaussian distribution is called a “component”, and each component has its parameters,
namely mean and covariance. Additionally, each component has a weight representing
the relative proportion of the component in generating the observed data. GMM is a
soft clustering method [14], which differs from brutal clustering methods (such as the
K-means algorithm [20]). GMM provides the probability of each data point belonging
to each component. While maximizing its likelihood function, parameters within each
component, such as the mean and covariance matrix, are iteratively updated to find the
final clustering results. The following sections will introduce the main concepts of the
GMM algorithm:

(1) Gaussian Distribution: The GMM assumes that the data are mixtures of multiple
Gaussian distributions. Each Gaussian distribution represents a cluster center of
the data.

(2) Mixture Coefficients: Mixture coefficients represent the proportion of each Gaussian
distribution in the entire dataset. If there are M Gaussian distributions, there are M
mixture coefficients, and their sum equals 1.

(3) Means: each Gaussian distribution has a mean representing the distribution’s and
cluster’s centers.

(4) Covariance Matrix: Each Gaussian distribution has a covariance matrix that describes
the shape of the data distribution, representing the data variation across different
dimensions.

Additionally, the widely used Expectation–Maximization (EM) algorithm is one of
the main processes in the GMM algorithm. In the GMM algorithm, the EM algorithm is
one of the reasons why Gaussian Mixture Model clustering is so widely applied. This
algorithm, which progresses toward maximizing the expectation, allows the GMM to find
a local optimum during iterations at least. The general flowchart of the algorithm is shown
in Figure 2.
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4.1.2. Improved GMM User Clustering Algorithm

Although the GMM algorithm differs from the hard clustering mode of the K-means
algorithm, it can cluster data without being limited to spherical or elliptical shapes, resulting
in more accurate clustering results. However, it still faces sensitivity issues related to the
initial number of clusters, similar to the K-means algorithm. Additionally, in NOMA-
ISAC communication, increasing intra-cluster user channel gain differences and balancing
communication and sensing performance are critical challenges. Therefore, this paper
improves the traditional Gaussian clustering algorithm, making it better suited to the user
clustering characteristics of NOMA-ISAC systems.

To address the limitations of algorithm applicability in NOMA-ISAC systems, this pa-
per introduces an improved GMM algorithm. The improved GMM algorithm first reduces
sensitivity to the number of centroids by calculating the Sum of Squared Errors (SSE). It
then introduces a directional weight centered on the base station, modifying the method
for estimating posterior probabilities in the E-Step of the EM algorithm. Additionally, the
covariance matrix is introduced to adjust the impact of sensing performance on the overall
system. Finally, the likelihood function calculation incorporates a penalty function tailored
for clustering in NOMA-ISAC systems. This adjustment influences the final convergence
result of the likelihood function, increasing the channel gain differences among users within
the same cluster and optimizing the sensing waveform, thereby improving the overall
system performance.

4.1.3. Algorithm Flow

Given the user dataset U = {u1, u2, . . . , uK} and base station coordinates, with user
coordinates and base station location as inputs, the algorithm flow is as follows:

1. m data points are randomly selected as initial clustering centers, i.e., the mean of each
Gaussian distribution µm.

2. The number of clusters M is randomly selected and SSE =
M
∑

m=1
|ui − µm|2 is calculated.

M is the number of clusters and µm is the m − th cluster, i.e., the mean of the m − th
Gaussian distribution and the point that makes the error squared, and the slope of the
SSE mutate is selected as the best positional transverse coordinate as the number of
Gaussian distributions M.

Repeat steps 1 and 2 until the position of the point where the slope changes sharply
stabilize.
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Initialize the covariance matrix ⨿m as an identity matrix. To ensure the number of
users in each cluster is uniform, initialize the mixture coefficients ∏m to 1/m. Define

the vectors from the base station to the cluster centers and user locations as
→

bµm and
→
bu,

respectively. Calculate the directional weight ϖ =
exp(β· cos(θb))

exp(β)
, where θb is the angle

between
→
bu and

→
bµm , β is a tuning factor that controls the degree of directional consistency,

and cos(θb) =
→

bµm ·
→
bu∥∥∥∥ →

bµm

∥∥∥∥·∥∥∥∥→bu

∥∥∥∥ is obtained through the dot product of the vectors.

E-Step
In the E-Step, it is necessary to calculate the posterior probability ℓ(zm

i ) that the user
um

i belongs to cluster m as follows:

ℓ(zm
i ) =

∏m ·ψ(ui
∣∣µm, ⨿m)·ϖm

i
M
∑

j=1
∏j ·ψ(ui|µm, ⨿m)·ϖ

j
i

(10)

where ψ(ui|µm, ⨿m) is the probability density of data point ui according to the Gaussian
distribution of cluster m and is calculated as follows:

ψ(ui

∣∣∣∣∣µm, ⨿
m
) =

exp
(
−1/2(ui − µm)

T ⨿−1
m (ui − µm)

)
√
(2π)2|⨿m|

(11)

where ⨿−1
m is the inverse of the covariance matrix for the m − th cluster and |⨿m| is the

determinant of the covariance matrix.
M-Step
Update the clustering parameters: Based on the calculated posterior probabilities

ℓ(zm
i ), update the mean µm, covariance matrix ⨿m, and mixture coefficient ∏m for each

cluster. To fully utilize the sensing signal’s statistical characteristics and optimize the
sensing target’s detection performance, this paper introduces an adaptive covariance
matrix update mechanism to achieve the joint optimization of communication and sensing.
The updated formula is as follows:

µm =
1

|Cm|

K

∑
i=1

ℓ(zm
i )ui (12)

⨿
m

=
1

|Cm|

K

∑
i=1

ℓ(zm
i )(ui − µm)(ui − µm)

T + εwiwH
i (13)

∏
m

=
|Cm|

K
(14)

where ε is the weight parameter used to adjust the impact of the sensing signal on the
intra-cluster distribution.

Check for convergence:
In this step, it is necessary to calculate the value of the likelihood function and check

whether it has converged, i.e., whether its change is below a preset threshold or if the maxi-
mum number of iterations has been reached. Additionally, a penalty function is introduced
in the algorithm to encourage finding user clusters that fit the clustering characteristics of
the NOMA-ISAC system. The penalty function is defined as follows:

ξ =
M

∑
m=1

1
|Cm|(|Cm| − 1) ∑

i,j∈Cm

dist(ui, uj) + ∑
q∈Q

τ(1 − p(θq)) (15)
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where dist(ui, uj) is the Euclidean distance between data points ui and uj. τ is the perceptual
weight parameter. The likelihood function is given by the following equation:

L = log2 P(U|∏, µ, ⨿)

=
K
∑

i=1
log2(

M
∑

m=1
∏mψ(Ui|µm, ⨿m))

(16)

where U is the set of all user coordinates. The improved objective likelihood function is
given by the following equation:

L′ = L − αξ (17)

where α is the regularization coefficient. The larger the model, the more significant the
increase in the difference in user channel gains within the cluster, which may result in
uneven mixture coefficients across clusters.

Repeat the E-Step and M-Step
Repeat the E-Step and M-Step until the objective function converges or the predeter-

mined maximum number of iterations is reached. Otherwise, return to the E-Step and
continue the iteration process with the updated parameters. The specific method is outlined
in the pseudocode shown in Algorithm 1.

Algorithm 1: Improved GMM User Clustering Algorithm

1 : Input user coordinates and base station location, then compute the initial values for the number
of clusters M and means µ.
2 : Initialize parameters ∏m and ⨿m.
3: Repeat
4 : E-Step : Keep parameters ∏m, ⨿m, µm unchanged. Compute the posterior probability ℓ(zm

i ) of
user ui by (10).
5 : M-Step : Keep ℓ(zm

i ) unchanged. Update parameters µm, ⨿m, ∏m by (12), (13), and (14).
6 : Repeat until the objective likelihood function L′ converges or the maximum number of
iterations is reached.

4.2. Fractional Programming-Based Beamforming Design

In the optimization problem introduced in Section 2, there is a constraint that each
user belongs to a unique cluster. The improved GMM algorithm determines the cluster
categories and number of users, addressing the variables υm

i and constraints C2 in the
objective function. Therefore, the integrated sensing and communication waveform design
problem can be simplified as follows:

F1′ :max
wi ,rm

i

f
(
rm

i , wi
)
= ρ

M
∑

m=1

|Cm |
∑

i=1
rm

i + (1 − ρ) ∑
q∈Q

p(θq)

s.t. C1 : ri ≥ rmin,i, ∀i ∈ k
C3 : WHW = Pt

C4 : WHEnW ≤ Ptη

N
, n = 1, 2, . . . , N.

(18)

However, in the waveform design problem addressed in this paper, user and rate
optimizations are challenging non-convex problems. Traditional Successive Convex Ap-
proximation (SCA) algorithms typically require transforming the problem into subproblems
involving additional mathematical techniques and transformation steps, inevitably increas-
ing the complexity of modeling and solving. Therefore, this paper adopts a fractional
programming approach to effectively handle the communication rate problem. Refer-
ence [15] introduces quadratic transformations to extend single-rate problems to multi-rate
problems. Unlike the Charnes–Cooper transformation, this quadratic transformation does
not face difficulties with the definition domain of new variables. It can effectively han-
dle continuous problems in beamforming, power control, and other areas in single- and
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multi-dimensional cases. Additionally, it provides two solution methods, direct methods
or solving the Lagrangian dual of the original function in closed form, thereby expanding
the approach to solving non-convex problems.

In this paper, the original objective function satisfies the constraints of a concave–
convex fractional programming problem [17]. The logarithmic functions in user and rate
optimization are non-decreasing. A direct method can be employed to address this multi-
rate problem. By introducing auxiliary variables λi, the constraint C1 can be reformulated
through a quadratic transformation as follows:

C1′ : r′i =
B
M

log2

 1 + 2Re{λH
i wm

i hm
i }

− λH
i

(
i−1
∑

j=1

∣∣∣wm
j hm

i

∣∣∣2 + B
M

σ2

)
λi

 ≥ rmin,i

where λH
i is the conjugate transpose of λi. Therefore, the optimization problem (18) can be

reformulated as follows:

P2 : max
wi ,λi ,r′i

f
(
r′i , wi, λi

)
= ρ

M
∑

m=1

|Cm |
∑

i=1
r′i + (1 − ρ) ∑

q∈Q
p
(
θq
)

s.t. C1′ : r′i ≥ rmin,i
C3, C4
C5 : λi ∈ C1

(19)

By applying a multidimensional quadratic transformation to decouple the numerator
and denominator, the optimization problem (18) is converted into the above optimization
problem (19). The SINR ratio term is transformed into a concave function concerning wi.
Given the non-decreasing and convex nature of the outer logarithmic function when the
auxiliary variable λi is fixed, the optimization problem (19) becomes a problem convex
relating to wi. According to the definition of concave-convex fractional programming, an
iterative optimization approach is employed. Fixing wi and taking the partial derivative of
the reconstructed function pertaining to λi, setting the derivative to zero yields the optimal
λi as follows:

λ∗
i =

wm
i hm

i
i−1
∑

j=1

∣∣∣wm
j hm

i

∣∣∣2 + B
M

σ2
(20)

When λi is fixed, the entire integrated sensing and communication beamforming
design problem becomes a convex optimization problem. The beamforming vector wi can
be solved using convex optimization methods, as detailed in Algorithm 2.

Algorithm 2: Iterative Optimization Algorithm with Fixed λi

1. Initialize a feasible value for wi
2. Repeat
3. Update the value of λi using Equation (20).
4. With λi fixed, solve the convex problem (19) to update the value wi.
5. Until the function f in problem (19) converges.

5. Simulation Experiments

To validate the effectiveness of the proposed algorithms and methods, we conducted
a detailed numerical simulation of the clustering performance of the improved GMM
algorithm and its impact on the system performance within the NOMA-ISAC framework.
The communication area is assumed to be 100 × 100 m2, with the base station located at
the center. The communication users are randomly distributed around the base station,
while the sensing targets are located at the edge of the region at angles of 45◦ and −45◦.
The other parameters are shown in Table 1.
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Table 1. Experimental simulation parameter settings.

Simulation Parameters (Units) Values

Number of Users K 30
Number of Sensing Targets Q 2

Number of Antennas N 4
System Bandwidth B (MHz) 10

Total Transmit Power
Pt (dB) 25

Noise Power σ2(dBm) −174
Minimum Rate rmin (bit/s) 1

Maximum Iterations for Improved GMM 1000
Maximum Iterations for Fractional Programming Algorithm 10

To demonstrate the clustering performance of the improved GMM algorithm, we com-
pare it with the original GMM clustering algorithm and the K-means clustering algorithm.
In this comparison, parameter a is set to 0.4 and b to 1.2. Based on the initialization of the
improved GMM algorithm in Section 4.1.3, the optimal number of clusters is determined.
For the K-means algorithm, the initial K value is set to 5. Due to the sensitivity of the
K-means algorithm to the initial positions of the cluster centers, as shown in Figure 3, the
user distribution in Cluster 2 is scattered and not concentrated. This is because the initial
cluster centers in the K-means algorithm are randomly chosen, resulting in suboptimal
clustering. In Figure 4, it is clear that the GMM algorithm can accommodate user clusters
of various shapes and sizes. However, in the clustering results of both algorithms, the
number of users in each cluster is not evenly distributed, and there are significant weight
differences between clusters. Therefore, both algorithms perform poorly for user clustering
in NOMA communication. Figure 5 shows the clustering effect of the improved GMM
algorithm. It can be seen that the algorithm clusters users into strip-like categories centered
on the base station. Each cluster has a weight close to 0.25, and the number of users in
each cluster is more evenly distributed than the K-means and traditional GMM algorithms.
Considering the base station’s location, this algorithm is more suitable for user classifi-
cation in NOMA communication. Additionally, Figure 5 shows that Cluster 4 has fewer
users than the other clusters. This is because when α > 0 is relatively large, the algorithm
emphasizes intra-cluster diversity, which may cause the mixture coefficient ∏m of each
cluster to become uneven. During iteration ∏m, introducing directional weights makes
one cluster’s mixture coefficient more significant than the others, resulting in a smaller
proportion for another cluster.
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The objective function of this paper maximizes the weighted sum of communication
rate and sensing power within the NOMA-ISAC system. The goal is to maximize this
function value without compromising user communication quality. Therefore, the choice
of the trade-off factor in the objective function is crucial, as it must balance both user
communication rate and sensing performance. Figure 6 shows the relationship between
the number of iterations and the objective function value under different values. It can be
observed that since the sensing power has a higher value compared to the communication
rate, the objective function value increases more significantly as ρ decreases. However,
regardless of the value ρ, the algorithm consistently converges to a stable function value
after about four iterations.
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To further illustrate the impact of the proposed improved GMM algorithm on the
performance of the ISAC system under NOMA communication, we compared the spectral
efficiency of the system using the K-means algorithm, traditional GMM algorithm, and
OMA-ISAC with the spectral efficiency of the improved GMM algorithm. The improved
GMM clustering algorithm introduces a penalty function and direction weights that en-
hance the diversity of users within clusters and provide an advantage in signal processing
at the receiver end during SIC compared to the base station’s strip-like cluster categories.
Figure 7 shows that the improved GMM algorithm provides a superior increase in spectral
efficiency for users compared to the other two algorithms.
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In NOMA communication, received signals are affected by interference from other
users and noise, so the receiver needs to perform SIC (successive interference cancellation)
to eliminate interference. The transmitter allocates power based on the channel differences
between users, making it easier to decode signals from users with more considerable
channel differences. Figure 5 has verified that the improved GMM clustering algorithm
is more effective in identifying strip-like clusters with more significant user differences.
To demonstrate the performance improvement of this algorithm for the ISAC system, we
compare the ISAC system using this algorithm with the NOMA-ISAC system, OMA-ISAC
system, and the ideal NOMA-ISAC system. As shown in Figure 8, in the ideal NOMA-ISAC
system, communication and sensing operate independently and do not affect each other.
As shown in Equation (9), the ideal spectral efficiency and sensing power are obtained by
excluding sensing and communication from the problem. Since NOMA allows multiple
users to communicate simultaneously on the same frequency band, it can significantly
improve spectrum utilization, thereby supporting more user connections and enhancing
the spectral efficiency of the ISAC system. In contrast, the OMA-ISAC system requires
orthogonal resources, resulting in reduced system capacity and spectral efficiency compared
to the NOMA-ISAC system, with a significant gap compared to the ideal NOMA-ISAC
system. The introduction of the improved GMM algorithm into the NOMA-ISAC system
aims to enhance its channel quality, allowing different users within the same cluster to be
effectively distinguished. This leads to a 4.3% increase in spectral efficiency compared to
the OMA-ISAC system, further improving the overall system performance.
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Figure 8. Performance trade-off comparison under different mechanisms.

Figures 9a and 9b show the beam intensity of the base station’s transmitted beam
as a function of angle in Cartesian and polar coordinates, respectively. In the Cartesian
coordinate system, the beam energy of the NOMA-ISAC system is relatively concentrated
in the target sensing directions of 45◦ and −45◦, indicating that under the QoS constraints
of numerous communication users, the system can still maintain good sensing perfor-
mance. However, due to interference between multiple users, the base station’s beam
covers multiple clusters, preventing the absolute concentration of beam intensity in the
target sensing direction. The polar coordinates also show the beam intensity in the target
sensing direction. It can be observed that in the OMA communication-based ISAC system,
there is a significant energy leakage in the target direction. This occurs because as the
number of communication users increases, the system becomes overloaded, resulting in
insufficient spatial degrees of freedom, increased interference between users, and a sub-
stantial reduction in beam intensity in the target direction. The improved GMM clustering
algorithm effectively reduces the system burden, increases the channel gain difference
among users within clusters, and further enhances the SIC decoding efficiency. Compared
to traditional communication–sensing integrated systems, beam intensity improves by
approximately 5.4%, and in NOMA communication, users can share spectrum resources
through power multiplexing, thus enhancing spectral efficiency.
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6. Conclusions

To enhance the performance of the ISAC system, this paper employs non-orthogonal
multiple access (NOMA) and proposes an improved GMM user clustering algorithm. The
goal is to maximize the weighted sum of the communication–sensing objective function.
This is achieved by using fractional programming to decouple and convert the original
problem into a convex problem for optimization. The simulation results show that the
NOMA-assisted ISAC system can reduce user interference during system overload. The
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improved GMM user clustering algorithm retains the algorithm’s ability to capture the dis-
tribution of users within clusters and enhances the system’s ability to optimize the sensing
target signal. It yields more uniform strip-shaped clusters, improving bandwidth reuse and
reducing serial interference, resulting in a 4.3% and 5.4% increase in spectral efficiency and
beam strength, respectively, compared to traditional ISAC systems. Additionally, fractional
programming effectively enhances power gain and channel gain, further improving the
performance of the ISAC system.

This study only considers the case where the base station beam covers multiple-user
clusters. Future research will design base station beams tailored to each user cluster’s
characteristics.
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