Robust License Plate Recognition in OCC-Based Vehicle Networks Using Image Reconstruction
<p>In applications of the IoV that adopt OCC, license-plate recognition cameras can interfere with coded light emitted from OCC devices; thus, the recognition performance is affected.</p> "> Figure 2
<p>Diagram of proposed license-plate recognition scheme workflow in the vehicle networks.</p> "> Figure 3
<p>We build a prototype that consists of a 30 W LED to simulate the LED infrastructures on the roadside in the OCC-based vehicle network and a Redmi K40 to simulate the LPR camera. We use this prototype to collect frames that are then used to build our dataset.</p> "> Figure 4
<p>Synthesize a dataset of OCC noise and original image. (<b>a</b>) OCC noise. (<b>b</b>) Original image. (<b>c</b>) Synthesized image.</p> "> Figure 5
<p>Examples of the captured dataset from real OCC-based vehicle network scene. (<b>a</b>) Distance 2 m, angle <math display="inline"><semantics> <msup> <mn>0</mn> <mo>∘</mo> </msup> </semantics></math>. (<b>b</b>) Distance 4 m, angle <math display="inline"><semantics> <msup> <mn>0</mn> <mo>∘</mo> </msup> </semantics></math>. (<b>c</b>) Distance 3 m, angle <math display="inline"><semantics> <msup> <mn>60</mn> <mo>∘</mo> </msup> </semantics></math>.</p> "> Figure 6
<p>A visualization comparison on synthesized image and real-scene image. (<b>a</b>) Synthesized OCC image. (<b>b</b>) Result of band-pass filter on the synthesized dataset. (<b>c</b>) Result of IR module on the synthesized dataset. (<b>d</b>) Real-scene OCC image. (<b>e</b>) Result of band-pass filter in real scenes. (<b>f</b>) Result of IR module in real scenes.</p> "> Figure 7
<p>Detection accuracy under varying settings on the synthesized dataset. (<b>a</b>) Increasing ISO. (<b>b</b>) Increasing shutter speed. (<b>c</b>) Increasing data rate.</p> "> Figure 8
<p>Recognition accuracy with different settings on the synthesized dataset. (<b>a</b>) Increasing ISO. (<b>b</b>) Increasing shutter speed. (<b>c</b>) Increasing data rate.</p> "> Figure 9
<p>Recognition accuracy under varying experiments in real scenes of the OCC-based vehicle networks. (<b>a</b>) Increasing distance. (<b>b</b>) Varying angle.</p> ">
Abstract
:1. Introduction
2. LPR Scheme in the OCC-Enabled Vehicle Network
2.1. Image Reconstruction Module for Corrupted License Plate
2.2. Reconstructed License-Plate Detection Module
2.3. License-Plate Character-Recognition Module
3. Prototype Implementation and Dataset
4. Experimental Results and Discussions
4.1. License-Plate Detection (LPD) Accuracy
4.2. License-Plate Recognition (LPR) Accuracy
4.2.1. LPR Accuracy on the Synthesized Dataset
4.2.2. LPR Accuracy in Real Scenes
4.3. LPR Accuracy Comparisons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.K.; Ali, M.O.; Rahman, M.H.; Chowdhury, M.Z.; Jang, Y.M. Optical Camera Communication in Vehicular Applications: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6260–6281. [Google Scholar] [CrossRef]
- Islam, A.; Thomos, N.; Musavian, L. Achieving URLLC with Machine Learning based Vehicular OCC. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 4558–4563. [Google Scholar]
- Zhang, P.; Liu, Z.; Hu, X.; Sun, Y.; Deng, X.; Zhu, B.; Yang, Y. Constraints and Recent Solutions of Optical Camera Communication for Practical Applications. Photonics 2023, 10, 608. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, P.; Sun, Y.; Deng, X.; Yang, Y.; Chen, L. High-Speed Extraction of Regions of Interest in Optical Camera Communication enabled by Grid Virtual Division. Sensors 2022, 22, 8375. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.H.; Jang, Y.M. Optical Camera Comunication (OCC) Applications for Internet of Vehicle (IoV). In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 16–18 October 2019; pp. 512–514. [Google Scholar]
- Cheng, Q.; Ma, H.; Sun, X. Vehicle LED Detection and Segmentation Recognition based on Deep Learning for Optical Camera Communication. Optoelectron. Lett. 2022, 18, 508–512. [Google Scholar] [CrossRef]
- Ali, M.O.; Jahan, I.; Mofidul, R.B.; Chung, B.; Jang, Y.M. Pothole Detection using Optical Camera Communication. In Proceedings of the 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju, Republic of Korea, 21–24 February 2022; pp. 298–301. [Google Scholar]
- Hossan, M.T.; Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Nguyen, T.; Le, N.T.; Jang, Y.M. A New Vehicle Localization Scheme based on Combined Optical Camera Communication and Photogrammetry. Mob. Inf. Syst. 2018, 2018, 8501898. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahjalal, M.; Chowdhury, M.Z.; Tuan Le, N.; Jang, Y.M. Simultaneous Traffic Sign Recognition and Real-Time Communication using Dual Camera in ITS. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 517–520. [Google Scholar]
- Anagnostopoulos, C.N.E. License Plate Recognition: A Brief Tutorial. IEEE Intell. Transp. Syst. Mag. 2014, 6, 59–67. [Google Scholar] [CrossRef]
- Hasan, M.K.; Chowdhury, M.Z.; Shahjalal, M.; Nguyen, V.T.; Jang, Y.M. Performance Analysis and Improvement of Optical Camera Communication. Appl. Sci. 2018, 8, 2527. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, Z.; Guo, W.; Huang, S. Adaptively Image De-striping through Frequency Filtering. In Proceedings of the ICO20: Optical Information Processing; SPIE: St Bellingham, WA, USA, 2006; Volume 6027, pp. 989–996. [Google Scholar]
- Münch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and Ring Artifact Removal with Combined Wavelet—Fourier Filtering. Opt. Express 2009, 17, 8567–8591. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Ahn, H.; Jeon, M. Snider: Single Noisy Image Denoising and Rectification for Improving License Plate Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Ardiyanto, I.; Munggaran, M.R.; Nugraha, I.; Tjandra, M.D.; Kuswana, R.P. Fast Multi-scale Homomorphic Quotient Filtering for Night Time License Plates Illumination Invariant and Denoising. In Proceedings of the 2019 International Electronics Symposium (IES), Surabaya, Indonesia, 27–28 September 2019; pp. 337–340. [Google Scholar]
- Silva, S.M.; Jung, C.R. License Plate Detection and Recognition in Unconstrained Scenarios. In Computer Vision—ECCV 2018; Springer: Cham, Switzerland, 2018; pp. 580–596. [Google Scholar]
- Chen, L.; Chu, X.; Zhang, X.; Sun, J. Simple Baselines for Image Restoration. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; pp. 17–33. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10); Omnipress: St Madison, WI, USA, 2010; pp. 807–814. [Google Scholar]
- Bruhn, A.; Weickert, J.; Schnörr, C. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. Int. J. Comput. Vis. 2005, 61, 211–231. [Google Scholar] [CrossRef]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2599–2613. [Google Scholar] [CrossRef]
- Chu, X.; Chen, L.; Chen, C.; Lu, X. Improving Image Restoration by Revisiting Global Information Aggregation. In Computer Vision—ECCV 2022; Springer: Cham, Switzerland, 2022; pp. 53–71. [Google Scholar]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Weihong, W.; Jiaoyang, T. Research on License Plate Recognition Algorithms based on Deep Learning in Complex Environment. IEEE Access 2020, 8, 91661–91675. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need. In Advances in Neural Information Processing Systems; NeurIPS: San Diego, CA, USA, 2017; Volume 30. [Google Scholar]
- GigaDevice. GD32F330G8U6-GD32 ARM Cortex-M4 Microcontroller. 2024. Available online: https://www.gigadevice.com.cn/product/mcu/mcus-product-selector/gd32f330g8u6tr (accessed on 5 October 2024).
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019; pp. 1–18. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022; pp. 1–16. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; Huang, L. Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline. In Computer Vision—ECCV 2018; Springer: Cham, Swirzerland, 2018; pp. 255–271. [Google Scholar]
- Lee, W.; Son, S.; Lee, K.M. AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric PD and Blind-Spot Network. In Proceedings of the IEEE/CVF CVPR, New Orleans, LA, USA, 18–24 June 2022; pp. 17725–17734. [Google Scholar]
- Wu, X.; Liu, M.; Cao, Y.; Ren, D.; Zuo, W. Unpaired Learning of Deep Image Denoising. In Computer Vision—ECCV 2020; Springer: Cham, Swirzerland, 2020; pp. 352–368. [Google Scholar]
- Krull, A.; Buchholz, T.O.; Jug, F. Noise2void-Learning Denoising from Single Noisy Images. In Proceedings of the IEEE/CVF CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 2129–2137. [Google Scholar]
Methods | Synthesized Data | Real Scenes Data |
---|---|---|
NAFNet | 83.14% | 79.43% |
Noise2void [33] | 62.85% | 64.79% |
AP-BSN [31] | 75.29% | 67.72% |
DBSN [32] | 69.16% | 58.36% |
IR | Filter | Baseline | |
---|---|---|---|
Synthesized data | 86.52% | 64.31% | 39.26% |
Real scenes data | 79.37% | 62.19% | 36.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Liu, Z.; Zhu, W.; Zheng, J.; Sun, Y.; Chen, C.; Yang, Y. Robust License Plate Recognition in OCC-Based Vehicle Networks Using Image Reconstruction. Sensors 2024, 24, 6568. https://doi.org/10.3390/s24206568
Zhang D, Liu Z, Zhu W, Zheng J, Sun Y, Chen C, Yang Y. Robust License Plate Recognition in OCC-Based Vehicle Networks Using Image Reconstruction. Sensors. 2024; 24(20):6568. https://doi.org/10.3390/s24206568
Chicago/Turabian StyleZhang, Dingfa, Ziwei Liu, Weiye Zhu, Jie Zheng, Yimao Sun, Chen Chen, and Yanbing Yang. 2024. "Robust License Plate Recognition in OCC-Based Vehicle Networks Using Image Reconstruction" Sensors 24, no. 20: 6568. https://doi.org/10.3390/s24206568
APA StyleZhang, D., Liu, Z., Zhu, W., Zheng, J., Sun, Y., Chen, C., & Yang, Y. (2024). Robust License Plate Recognition in OCC-Based Vehicle Networks Using Image Reconstruction. Sensors, 24(20), 6568. https://doi.org/10.3390/s24206568