Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment
<p>Electrode placement of the four-electrode setup with an additional reference electrode. The current electrodes (red) placed on sternocleidomastoideus close to the ear introduce a sinusoidal current of 50 kHz. The measurement electrodes (green) placed on each side of the larynx measure the voltage over the enclosed tissue. The reference electrode (gray) is used to suppress common-mode disturbances.</p> "> Figure 2
<p>BI and EMG measurement of a saliva swallow. The swallow preparation phase (green background) shows some variation in the BI data caused by tongue movements from collecting saliva. The oral swallowing phase (red background) displays a small peak in the BI data, which continuously transitions to the BI swallow valley caused by the larynx elevation during the pharyngeal swallowing phase (blue background). The vertical line defines the time of the swallow onset marked by an expert, shortly after the start of the pharyngeal swallowing phase.</p> "> Figure 3
<p>A visualization of the cleaned EMG (EMG), the envelope EMG (eEMG), and the BI of a single swallow for EMG-based swallow onset detection. The black section of the eEMG trace highlights the <span class="html-italic">w</span> samples of eEMG that exceed <math display="inline"><semantics> <msup> <mi>θ</mi> <mi>EMG</mi> </msup> </semantics></math>. The red vertical line denotes the manually marked swallow onset, while the black vertical line denotes the time of the detected swallow onset. The light red area marks the period with disabled onset detection that starts at a detected onset.</p> "> Figure 4
<p><b>Left:</b> Visualization of the BI data vectors of swallow onsets (12) and non-swallow events (34) in a healthy subject, shifted to zero at the time zero of potential swallow onsets. <b>Right:</b> Visualization of the tEMG data vectors of swallow onsets and non-swallows shifted to zero at the time zero of potential swallow onsets.</p> "> Figure 5
<p>A visualization of EMG data vectors of swallow onsets and non-swallow events in a healthy subject preceding the potential swallow onsets at time zero. The left subplot shows the EMG vectors of 12 swallow onsets (blue), and the right subplot shows the EMG vectors of 34 non-swallow events (green).</p> "> Figure 6
<p>Illustration of the overlap <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> between two Log-normal probability-density functions <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>∼</mo> <mi>L</mi> <mi>o</mi> <mi>g</mi> <mi>N</mi> <mi>o</mi> <mi>r</mi> <mi>m</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.6</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>A</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>∼</mo> <mi>L</mi> <mi>o</mi> <mi>g</mi> <mi>N</mi> <mi>o</mi> <mi>r</mi> <mi>m</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.9</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Visualization of sensitivity (green dots), precision (red triangles), and <math display="inline"><semantics> <msub> <mi mathvariant="normal">F</mi> <mn>1</mn> </msub> </semantics></math> score (blue dots) of BI/EMG-based detection of swallow onsets for individual dysphagia patients. A black line connects the sensitivity and the precision of each patient to visualize the span width between the scores.</p> ">
Abstract
:1. Introduction
1.1. Swallowing and Dysphagia
1.2. Biofeedback and FES for Dysphagia Therapy
1.3. Summary and Article Outline
2. Materials and Methods
2.1. Database
2.1.1. Data Series I
2.1.2. Data Series II
2.1.3. Data Series III
2.1.4. Data Series IV
2.2. Assignment of Class Labels
2.3. Evaluation Scores
2.3.1. Timing
2.3.2. Preselection
2.3.3. Detection Performance
2.4. Preprocessing of BI and EMG Data
2.5. EMG-Based Detection of Swallow Onsets
2.5.1. Detection of Active EMG Onsets
2.5.2. Label Assignment
2.5.3. Optimization and Evaluation
2.6. BI/EMG-Based Detection of Swallow Onsets
2.6.1. BI-Based Preselection
Algorithm 1 BI-based Preselection | ||
1: | procedure Initialization() | |
2: | ▹ current maximum | |
3: | ▹ previous sample | |
4: | ▹ pre-previous sample | |
5: | ▹ flag for maximum search | |
6: | end procedure | |
7: | ||
8: | procedure Preselection() | |
9: | out ← False | |
10: | ||
11: | if and then | ▹ reset local maximum search |
12: | ||
13: | True | |
14: | end if | |
15: | ||
16: | if and max = True then | ▹ check threshold |
17: | False | |
18: | out← True | |
19: | end if | |
20: | ||
21: | ▹ save values for local maximum search | |
22: | ||
23: | ||
24: | return out | |
25: | end procedure |
2.6.2. Label Assignment
2.6.3. Feature Extraction
2.6.4. Feature Optimization
2.6.5. Hyperparameter Optimization
2.6.6. Classifier Selection and Test
- Determine the mean values for all rows of .
- Find the index of the largest mean value: .
- Select all rows of whose lie in the interval and select the one that has the lowest mean of the corresponding rows in the matrix (complexity measure). This yields the index and vector .
- Test the classifier linked to on to yield the unbiased score .
3. Results
3.1. BI-Based Preselection of Swallow Onsets
3.2. Optimized Test Results
3.2.1. EMG-Based Detection of Swallow Onsets
3.2.2. BI/EMG-Based Detection of Swallow Onsets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BI | Bioimpedance |
EMG | Electromyography |
eEMG | envelope of Electromyography |
DoSO | Detection of Swallow Onsets |
FES | Functional Electric Stimulation |
FN | False Negatives |
FP | False Positives |
LOSO | Leave-One-Subject-Out |
KDE | Kernel Density Estimation |
RF | Random Forest |
RT | Reference Times |
tEMG | trend in Electromyography |
TI | Time of Interest |
TN | True Negatives |
TP | True Positives |
VFSS | Videofluoroscopic Swallowing Study |
Appendix A. Overlap Estimation and Results of Feature Relevance Optimization
Data | j | Feature | ||||||
---|---|---|---|---|---|---|---|---|
tEMG | 1 | 200 | 40 | 4000 | 400 | 0.1 s | 78.6% | |
2 | 200 | 40 | 4000 | 6000 | 1.5 s | 82.1% | ||
3 | 600 | 20 | 4000 | 1200 | 0.3 s | 80.4% | ||
BI | 4 | 5 | 40 | 100 | 30 | 0.3 s | 63.1% | |
5 | 5 | 40 | 100 | 190 | 1.9 s | 74.5% | ||
6 | 15 | 20 | 100 | 75 | 0.75 s | 63.8% | ||
7 | 15 | 20 | 100 | 75 | 0.75 s | 78.4% | ||
8 | 15 | 20 | 100 | 45 | 0.45 s | 82.6% | ||
EMG | 9 | AAC | 100 | 40 | 4000 | 300 | 0.075 s | 39.9% |
10 | 100 | 40 | 4000 | 1700 | 0.425 s | 38.4% | ||
11 | 600 | 20 | 4000 | 7200 | 1.8 s | 40.8% | ||
12 | 600 | 20 | 4000 | 1800 | 0.45 s | 60.1% |
References
- Armstrong, J.R.; Mosher, B.D. Aspiration Pneumonia After Stroke. Neurohospitalist 2011, 1, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Banda, K.J.; Chu, H.; Kang, X.L.; Liu, D.; Pien, L.C.; Jen, H.J.; Hsiao, S.T.S.; Chou, K.R. Prevalence of dysphagia and risk of pneumonia and mortality in acute stroke patients: A meta-analysis. BMC Geriatr. 2022, 22, 420. [Google Scholar] [CrossRef]
- Giraldo-Cadavid, L.F.; Pantoja, J.A.; Forero, Y.J.; Gutiérrez, H.M.; Bastidas, A.R. Aspiration in the Fiberoptic Endoscopic Evaluation of Swallowing Associated with an Increased Risk of Mortality in a Cohort of Patients Suspected of Oropharyngeal Dysphagia. Dysphagia 2020, 35, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Manikantan, K.; Khode, S.; Sayed, S.I.; Roe, J.; Nutting, C.M.; Rhys-Evans, P.; Harrington, K.J.; Kazi, R. Dysphagia in head and neck cancer. Cancer Treat. Rev. 2009, 35, 724–732. [Google Scholar] [CrossRef]
- Groher, M.; Crary, M. Dysphagia: Clinical Management in Adults and Children, 3rd ed.; Elsevier: St. Louis, MO, USA, 2020; pp. 1–400. [Google Scholar]
- Matsuo, K.; Palmer, J.B. Anatomy and Physiology of Feeding and Swallowing: Normal and Abnormal. Phys. Med. Rehabil. Clin. N. Am. 2008, 19, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Nahrstaedt, H.; Schauer, T.; Seidi, R. Bioimpedance based measurement system for a controlled swallowing neuro-prosthesis. In Proceedings of the 15th Annual International FES Society Conference and 10th Vienna Int. Workshop on FES, Vienna, Austria, 8–12 September 2010; pp. 49–51. [Google Scholar]
- Yamamoto, Y.; Nakamura, T.; Seki, Y.; Utsuyama, K.; Akashi, K.; Jikuya, K. Neck electrical impedance for measurement of swallowing. Electr. Eng. Jpn. 2000, 130, 35–44. [Google Scholar] [CrossRef]
- Smaoui, S.; Peladeau-Pigeon, M.; Steele, C.M. Determining the Relationship Between Hyoid Bone Kinematics and Airway Protection in Swallowing. J. Speech Lang. Hear. Res. 2022, 65, 419–430. [Google Scholar] [CrossRef]
- Nahrstaedt, H. Automatic Detection and Assessment of Swallowing Based on Bioimpedance and Electromyography Measurements—Enabling Control of Functional Electrical Stimulation Synchronously to Volitional Swallowing in Dysphagic Patients. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Frank, D.L.; Khorshid, L.; Kiffer, J.F.; Moravec, C.S.; McKee, M.G. Biofeedback in medicine: Who, when, why and how? Ment. Health Fam. Med. 2010, 7, 85–91. [Google Scholar]
- Crary, M.A. A direct intervention program for chronic neurogenic dysphagia secondary to brainstem stroke. Dysphagia 1995, 10, 6–18. [Google Scholar] [CrossRef]
- Loppnow, A.; Netzebandt, J.; Frank, U.; Huckabee, M.L. Skill-Training in der Dysphagietherapie: Möglichkeiten eines patientenorientierten Vorgehens mittels sEMG-Biofeedback. Spektrum Patholinguistik 2016, 9, 243–258. [Google Scholar]
- Crary, M.A.; Carnaby, G.D.; Groher, M.E.; Helseth, E. Functional benefits of dysphagia therapy using adjunctive sEMG biofeedback. Dysphagia 2004, 19, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Huckabee, M.L.; Steele, C.M. An Analysis of Lingual Contribution to Submental Surface Electromyographic Measures and Pharyngeal Pressure During Effortful Swallow. Arch. Phys. Med. Rehabil. 2006, 87, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.M.; Bennett, J.W.; Chapman-Jay, S.; Polacco, R.C.; Molfenter, S.M.; Oshalla, M. Electromyography as a Biofeedback Tool for Rehabilitating Swallowing Muscle Function. In Applications of EMG in Clinical and Sports Medicine; InTech: London, UK, 2012; Chapter 19; pp. 311–328. [Google Scholar] [CrossRef]
- Archer, S.K.; Smith, C.H.; Newham, D.J. Surface Electromyographic Biofeedback and the Effortful Swallow Exercise for Stroke-Related Dysphagia and in Healthy Ageing. Dysphagia 2021, 36, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Azola, A.M.; Sunday, K.L.; Humbert, I.A. Kinematic Visual Biofeedback Improves Accuracy of Learning a Swallowing Maneuver and Accuracy of Clinician Cues During Training. Dysphagia 2017, 32, 115–122. [Google Scholar] [CrossRef]
- Lee, Y.; Nicholls, B.; Lee, D.S.; Chen, Y.; Chun, Y.; Ang, C.S.; Yeo, W.H. Soft electronics enabled ergonomic human–computer interaction from swallowing training. Sci. Rep. 2017, 7, 46697. [Google Scholar] [CrossRef]
- Stepp, C.E.; Britton, D.; Chang, C.; Merati, A.L.; Matsuoka, Y. Feasibility of game-based electromyographic biofeedback for dysphagia rehabilitation. In Proceedings of the 2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 233–236. [Google Scholar] [CrossRef]
- Pollock, C.R.; Lopez, D.A.; Wambaugh, G.; Almanzar, L.; Morrissey, A.; Krings, K.; Galek, K.; Harris, F.C. Avaler’s adventure: An open source game for dysphagia therapy. In Proceedings of the 26th International Conference on Software Engineering and Data Engineering, SEDE 2017, San Diego, CA, USA, 2–4 October 2017. [Google Scholar]
- Li, C.M.; Wang, T.G.; Lee, H.Y.; Wang, H.P.; Hsieh, S.H.; Chou, M.; Jason Chen, J.J. Swallowing Training Combined with Game-Based Biofeedback in Poststroke Dysphagia. PM R 2016, 8, 773–779. [Google Scholar] [CrossRef]
- Li, C.M.; Lee, H.Y.; Hsieh, S.H.; Wang, T.G.; Wang, H.P.; Chen, J.J.J. Development of Innovative Feedback Device for Swallowing Therapy. J. Med. Biol. Eng. 2016, 36, 357–368. [Google Scholar] [CrossRef]
- Kwong, E.; Ng, K.W.K.; Leung, M.T.; Zheng, Y.P. Application of Ultrasound Biofeedback to the Learning of the Mendelsohn Maneuver in Non-dysphagic Adults: A Pilot Study. Dysphagia 2021, 36, 650–658. [Google Scholar] [CrossRef]
- Hopkins-Rossabi, T.; Rowe, M.; McGrattan, K.; Rossabi, S.; Martin-Harris, B. Respiratory–Swallow Training Methods: Accuracy of Automated Detection of Swallow Onset, Respiratory Phase, Lung Volume at Swallow Onset, and Real-Time Performance Feedback Tested in Healthy Adults. Am. J. Speech-Lang. Pathol. 2020, 29, 1012–1021. [Google Scholar] [CrossRef]
- Miller, K.J.W.; Macrae, P.; Sands, G.B.; Huckabee, M.l.; Cheng, L.K. An Accurate Fiducial Marker for Aligning EMG signals with Swallow Onset. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Langmore, S.E.; Pisegna, J.M. Efficacy of exercises to rehabilitate dysphagia: A critique of the literature. Int. J. Speech-Lang. Pathol. 2015, 17, 222–229. [Google Scholar] [CrossRef]
- Speyer, R.; Cordier, R.; Sutt, A.L.; Remijn, L.; Heijnen, B.J.; Balaguer, M.; Pommée, T.; McInerney, M.; Bergström, L. Behavioural Interventions in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. J. Clin. Med. 2022, 11, 685. [Google Scholar] [CrossRef] [PubMed]
- Benfield, J.K.; Everton, L.F.; Bath, P.M.; England, T.J. Does Therapy With Biofeedback Improve Swallowing in Adults With Dysphagia? A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 551–561. [Google Scholar] [CrossRef]
- Battel, I.; Calvo, I.; Walshe, M. Interventions Involving Biofeedback to Improve Swallowing in People With Parkinson Disease and Dysphagia: A Systematic Review. Arch. Phys. Med. Rehabil. 2021, 102, 314–322. [Google Scholar] [CrossRef]
- Takeda, K.; Tanino, G.; Miyasaka, H. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation. Med. Devices Evid. Res. 2017, 10, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Schauer, T. Sensing motion and muscle activity for feedback control of functional electrical stimulation: Ten years of experience in Berlin. Annu. Rev. Control 2017, 44, 355–374. [Google Scholar] [CrossRef]
- Leelamanit, V.; Limsakul, C.; Geater, A. Synchronized electrical stimulation in treating pharyngeal dysphagia. Laryngoscope 2002, 112, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Burnett, T.A.; Mann, E.A.; Cornell, S.A.; Ludlow, C.L. Laryngeal elevation achieved by neuromuscular stimulation at rest. J. Appl. Physiol. 2003, 94, 128–134. [Google Scholar] [CrossRef]
- Burnett, T.A.; Mann, E.A.; Stoklosa, J.B.; Ludlow, C.L. Self-triggered functional electrical stimulation during swallowing. J. Neurophysiol. 2005, 94, 4011–4018. [Google Scholar] [CrossRef]
- Humbert, I.A.; Poletto, C.J.; Saxon, K.G.; Kearney, P.R.; Crujido, L.; Wright-Harp, W.; Payne, J.; Jeffries, N.; Sonies, B.C.; Ludlow, C.L. The effect of surface electrical stimulation on hyolaryngeal movement in normal individuals at rest and during swallowing. J. Appl. Physiol. 2006, 101, 1657–1663. [Google Scholar] [CrossRef]
- Nahrstaedt, H.; Schultheiss, C.; Schauer, T.; Seidl, R.O. Bioimpedance- and EMG-Triggered FES for Improved Protection of the Airway During Swallowing. Biomed. Eng./Biomed. Tech. 2013, 58, 000010151520134025. [Google Scholar] [CrossRef]
- Schultheiss, C.; Schauer, T.; Nahrstaedt, H.; Seidl, R.O. Efficacy of EMG/Bioimpedance-Triggered Functional Electrical Stimulation on Swallowing Performance. Eur. J. Transl. Myol. 2016, 26, 6065. [Google Scholar] [CrossRef] [PubMed]
- Hadley, A.J.; Kolb, I.; Tyler, D.J. Laryngeal elevation by selective stimulation of the hypoglossal nerve. J. Neural Eng. 2013, 10, 046013. [Google Scholar] [CrossRef]
- Tyler, D.J. Neuroprostheses for management of dysphagia resulting from cerebrovascular disorders. Acta Neurochir. Suppl. 2007, 97, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, C. Die Bewertung der Pharyngalen Schluckphase Mittels Bioimpedanz: Evaluation eines Mess- und Diagnostikverfahrens. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2014. [Google Scholar]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 17, 168–192. [Google Scholar] [CrossRef]
- Schultheiss, C.; Schauer, T.; Nahrstaedt, H.; Seidl, R.O. Evaluation of an EMG bioimpedance measurement system for recording and analysing the pharyngeal phase of swallowing. Eur. Arch. Oto-Rhino-Laryngol. 2013, 270, 2149–2156. [Google Scholar] [CrossRef]
- Radivojac, P.; Obradovic, Z.; Keith Dunker, A.; Vucetic, S. Feature Selection Filters Based on the Permutation Test. In Proceedings of the Machine Learning: ECML 2004, Pisa, Italy, 20–24 September 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 334–346. [Google Scholar] [CrossRef]
- Pastore, M.; Calcagnì, A. Measuring distribution similarities between samples: A distribution-free overlapping index. Front. Psychol. 2019, 10, 1089. [Google Scholar] [CrossRef] [PubMed]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: New York, NY, USA, 1984; pp. 1–358. [Google Scholar]
- Chen, Y.; Yang, Y. The One Standard Error Rule for Model Selection: Does It Work? Stats 2021, 4, 868–892. [Google Scholar] [CrossRef]
- Yates, L.A.; Aandahl, Z.; Richards, S.A.; Brook, B.W. Cross validation for model selection: A review with examples from ecology. Ecol. Monogr. 2023, 93, e1557. [Google Scholar] [CrossRef]
Data Series | Subjects | Age | Swallows | Duration | Commentary |
---|---|---|---|---|---|
I | 20 (8♀, 12♂) | 30.5 (7.7) | 965 | movements | |
II | 15 (4♀, 11♂) | 29.0 (4.5) | 2044 | repeatability | |
III | 9 (7♀, 2♂) | 38.6 (9.4) | 130 | investigators | |
IV | 41 (15♀, 26♂) | 63.4 (13.8) | 704 | patients |
Optimization | Hyperparameter | Distribution | Range |
---|---|---|---|
grid search | weight1 | n.a. | |
random search | min_impurity_decrease | uniform distribution | |
random search | ccp_alpha | uniform distribution | |
random search | min_weight_fraction_leaf | uniform distribution | |
random search | max_samples | uniform distribution |
Data Series | [-] | [-] | [s] |
---|---|---|---|
I | 0.993 | 0.139 | 0.031 (0.068) |
II | 0.998 | 0.256 | 0.044 (0.076) |
III | 0.977 | 0.199 | 0.048 (0.056) |
IV | 0.98 | 0.114 | 0.033 (0.1) |
Mean I, II, III, IV | 0.992 | 0.191 | 0.039 (0.079) |
Data Series | Sensitivity [-] | Precision [-] | Score [-] | [s] |
---|---|---|---|---|
I | 0.84 [0.131] | 0.425 [0.147] | 0.553 [0.135] | 0.019 (0.172) |
II | 0.759 [0.235] | 0.603 [0.463] | 0.619 [0.199] | 0.039 (0.195) |
III | 0.625 [0.292] | 0.455 [0.509] | 0.529 [0.127] | 0.022 (0.182) |
IV | 0.5 [0.678] | 0.197 [0.484] | 0.289 [0.496] | 0.018 (0.203) |
Data Series | Sensitivity [-] | Precision [-] | Score [-] | Specificity [-] | [s] | |
---|---|---|---|---|---|---|
I | 0.827 [0.129] | 0.656 [0.253] | 0.705 [0.191] | 0.945 [0.064] | 0.031 (0.068) | 2.0 |
II | 0.875 [0.139] | 0.75 [0.183] | 0.826 [0.094] | 0.956 [0.139] | 0.044 (0.076) | 0.5 |
III | 0.698 [0.277] | 0.846 [0.159] | 0.732 [0.184] | 0.943 [0.034] | 0.048 (0.056) | 1.5 |
IV | 0.56 [0.482] | 0.5 [0.321] | 0.546 [0.405] | 0.943 [0.084] | 0.033 (0.1) | 2.0 |
Training | Test | Sensitivity [-] | Precision [-] | Score [-] | Specificity [-] | |
---|---|---|---|---|---|---|
I, II, III | IV | 0.544 [0.539] | 0.556 [0.458] | 0.556 [0.405] | 0.949 [0.067] | 1.5 |
I, II, III, IV | IV | 0.603 [0.457] | 0.455 [0.333] | 0.518 [0.378] | 0.925 [0.083] | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riebold, B.; Seidl, R.O.; Schauer, T. Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment. Sensors 2024, 24, 6525. https://doi.org/10.3390/s24206525
Riebold B, Seidl RO, Schauer T. Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment. Sensors. 2024; 24(20):6525. https://doi.org/10.3390/s24206525
Chicago/Turabian StyleRiebold, Benjamin, Rainer O. Seidl, and Thomas Schauer. 2024. "Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment" Sensors 24, no. 20: 6525. https://doi.org/10.3390/s24206525
APA StyleRiebold, B., Seidl, R. O., & Schauer, T. (2024). Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment. Sensors, 24(20), 6525. https://doi.org/10.3390/s24206525