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Abstract: Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the
complex nature of multipath propagation. Traditional approaches typically focus on NLOS node
identification and error mitigation techniques. However, the intricacies of NLOS localization are
intrinsically tied to propagation challenges. In this paper, we propose a novel single-site localization
method tailored for complex multipath NLOS environments, leveraging only angle-of-arrival (AOA)
estimates in conjunction with a ray-tracing (RT) algorithm. The method transforms NLOS paths
into equivalent line-of-sight (LOS) paths through the generation of generalized sources (GSs) via
ray tracing. A novel weighting mechanism for GSs is introduced, which, when combined with an
iteratively reweighted least squares (IRLS) estimator, significantly improves the localization accuracy
of non-cooperative target sources. Furthermore, a multipath similarity displacement matrix (MSDM)
is incorporated to enhance accuracy in regions with pronounced multipath fluctuations. Simulation
results validate the efficacy of the proposed algorithm, achieving localization performance that
approaches the Cramér–Rao lower bound (CRLB), even in challenging NLOS scenarios.

Keywords: AOA; NLOS; single-site localization; propagation; RT; IRLS

1. Introduction

Traditional localization methods assume a LOS condition between the user and the
localization station [1]. However, in complex urban environments, there are often intricate
NLOS conditions [2]. Obstacles in the LOS path cause reflections, diffractions [3], and
transmissions [4] in signal propagation. In such NLOS scenarios, the observed time of
arrival (TOA) [5], time difference of arrival (TDOA) [6], AOA [7], and received signal
strength (RSS) [8] can introduce significant errors, leading to increased inaccuracies in
traditional localization methods [9].

Current research on NLOS localization methods primarily focuses on two aspects:
NLOS identification techniques and NLOS error mitigation techniques [10–12]. NLOS
error identification primarily uses empirical measurement data as support, often applied
in multi-sensor cooperative localization [13–16]. Channel information such as RSS, root
mean square delay, and root mean square angle spread is used to identify LOS or NLOS
nodes [17–22]. Some studies also mention using deep learning tools as a key to identify-
ing localization errors. For instance, [23] employed ultra-wideband (UWB) devices and
integrated deep learning to develop a Deep Q-Learning energy-optimized LOS/NLOS
framework, effectively improving the localization accuracy of TDOA algorithms in multi-
station scenarios. In [24], the author utilized an AdaBoost network classifier to identify
NLOS nodes, enhancing the TOA localization accuracy. Additionally, Kalman filtering
methods have been used in some studies to filter out NLOS information [25–27]. However,
in severe NLOS conditions, the LOS path may not be obtainable, leading to degraded local-
ization accuracy for methods relying on LOS path identification [28]. The second approach
is NLOS error mitigation techniques. Existing error mitigation methods mainly rely on
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data bias or noise deviations in known NLOS environments, which limits the applicability
of the algorithms in different NLOS scenarios. In [29], the author assumed that all paths
were NLOS and introduced a TOA-RSS combined NLOS bias parameter. This method
transforms the original non-convex problem into a generalized trust region sub-problem
(GTRS) framework, effectively improving localization in NLOS scenarios. In [30], the
author employed an equality-constrained Taylor series robust least squares method to
suppress NLOS errors in UWB localization systems. This approach effectively reduces
the algorithm’s dependence on prior NLOS data. The work in [31] employed a nonlinear
weighted least squares method to eliminate NLOS errors in TOA and RSS hybrid localiza-
tion. By using a convex hull constraint, this method does not require prior NLOS statistical
information. The work in [32] proposed a regulation term least-square-based semidefinite
programming (RTLS-SDP) method that improves TOA localization accuracy without prior
NLOS information. However, these studies address mixed LOS/NLOS scenarios, and the
localization performance of these algorithms degrades in purely NLOS conditions.

Additionally, some researchers have focused on using NLOS information for localiza-
tion. Chee Kiat Seow proposed a method that utilizes single-scattering paths to fuse AOA
and TOA for localization [33]. In this approach, multiple-scattering paths are identified
and removed, which reduces the impact of complex NLOS paths on localization. However,
this method does not address localization challenges in severe NLOS environments. In [34],
the author first introduced the concept of virtual stations (VSs) and developed the T two-
step weighted least squares (TSWLS) method by incorporating TOA observations. This
approach achieved localization in simple geometric NLOS scenarios. The work in [35–37]
proposed a VS localization method based on geometric maps. This method converts NLOS
paths into LOS paths and establishes a joint TSWLS equation for TOA and AOA, effectively
reducing the impact of some NLOS paths on localization. However, when localization relies
solely on low-order or single-reflection paths, the accuracy is poor in complex multipath
scenarios, and clock synchronization errors among multiple stations can further impact
localization precision. In [38], the author introduces a system of nonlinear equations by
establishing a VS and combining AOA and TDOA estimation parameters. The TSWLS
method is applied to achieve single-station localization, effectively mitigating the errors
caused by clock synchronization in TDOA localization. However, this approach considers
only basic geometric information and overlooks the characteristics of electromagnetic wave
propagation channels. Consequently, its localization performance is significantly limited in
complex NLOS environments.

To address the limitations of traditional localization algorithms in NLOS scenarios,
this paper integrates RT algorithms [39,40] with conventional AOA localization algorithms
to develop the ray-tracing localization-based service (RT-LBS) method. This approach
effectively enables the localization of non-cooperative target sources (NCTSs) in urban
environments using only a single station. Simulations and experimental results demonstrate
that the proposed algorithm achieves the CRLB.

In summary, this paper makes the following contributions:

• To improve the performance of existing RT methods and better align them with the
proposed localization approach, this paper integrates the advantages of both RT
and the shooting and bouncing ray (SBR) technique. Furthermore, an innovative
adaptive ray tube structure is introduced, allowing the propagation effects within the
environment to be more accurately captured and reflected in the localization algorithm.

• The localization method integrates AOA localization with RT to construct nonlinear
equations using GSs generated by sensors in the environment. A heuristic approach
for determining equation weights based on angle and power residuals is constructed,
and the IRLS method is applied for the precise localization of NCTSs. Simulations and
experimental results show that the proposed method reaches the CRLB.

• In NLOS scenarios, regions with rapid multipath birth and death processes can
severely compromise the robustness of localization algorithms. To address this, this
paper introduces an MSDM designed based on multipath similarity. By integrating
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the MSDM, the robustness of the localization algorithm in these challenging regions is
significantly improved.

• In this paper, the localization algorithm requires repeated invocations of the ray-tracing
(RT) process for path generation, which involves extensive traversal of the node tree
structure constructed by the RT algorithm. This results in decreased computational
efficiency. To address this issue, a fast GPU-based algorithm is proposed, which
accelerates the path generation component of the RT within the localization algorithm,
thereby significantly improving its overall efficiency.

The rest of this paper is organized as follows: Section 2 introduces improvements
to the ray-tracing algorithm. Section 3 illustrates the construction process of the RT-LBS
method. Section 4 showcases the relevant simulations and experimental results supporting
the fundamental theory of RT-LBS. Section 5 discusses the findings and limitations of this
study. Section 6 provides conclusions and future research plans.

2. The Improvement of the Ray-Tracing Algorithm

RT methods can be divided into two main categories: the image-based ray-tracing
method (IM-RT) [41] and the shooting and bouncing ray method (SBR) [42]. The IM-RT
algorithm first constructs a mirror source tree structure within the environment, followed
by solving the path to the receiving point. In contrast, the SBR method emits rays uniformly
in all directions from the transmitting point and calculates energy paths by employing
a receiving sphere. Due to the differing mechanisms of path generation, the accuracy of
electromagnetic field calculations using IM-RT is generally higher than that of SBRs. The
2.5D RT method proposed in this paper combines the advantages of IM-RT and SBRs. In
Figure 1, a simplified flow diagram of the implementation of the RT model is presented.
The corresponding process can be divided into the following main steps: simulation setup,
the loading and preprocessing of environmental information, the creation of propagation
paths between the Tx and Rx, the calculation of fields and the processing of simulation
results, and the output of simulation results.
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Figure 1. A flowchart of the proposed RT algorithm. Figure 1. A flowchart of the proposed RT algorithm.

The following section provides a detailed explanation of the key components of
the proposed algorithm, including the ray-splitting algorithm, ray reception algorithm,
and electromagnetic field computation. First, the overall algorithm adopts the ray tube
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launching method, where ray tubes are uniformly launched in a two-dimensional plane,
and each ray tube is then traced as it undergoes reflection, transmission, diffraction, and
other propagation phenomena in the environment. To further improve accuracy, the
proposed algorithm employs ray tube reception instead of the receiving sphere as the
reception determination criterion. Finally, the coarse path to the receiving point is refined
using the IM method to obtain an accurate path. As shown in Figure 2, the propagation of
rays results in a binary tree structure of ray nodes [43].

Sensors 2024, 24, 7925 4 of 31 
 

 

The following section provides a detailed explanation of the key components of the 
proposed algorithm, including the ray-splitting algorithm, ray reception algorithm, and 
electromagnetic field computation. First, the overall algorithm adopts the ray tube launch-
ing method, where ray tubes are uniformly launched in a two-dimensional plane, and 
each ray tube is then traced as it undergoes reflection, transmission, diffraction, and other 
propagation phenomena in the environment. To further improve accuracy, the proposed 
algorithm employs ray tube reception instead of the receiving sphere as the reception de-
termination criterion. Finally, the coarse path to the receiving point is refined using the 
IM method to obtain an accurate path. As shown in Figure 2, the propagation of rays re-
sults in a binary tree structure of ray nodes [43]. 

 
Figure 2. Binary tree structure of ray nodes. 

2.1. Ray-Splitting Algorithm 
The 2.5D RT algorithm proposed in this paper combines the advantages of the ray 

tube method and the image method. In the algorithm, rays are designed in the form of ray 
tubes with splitting attributes. During the initial path search, the uniform splitting thresh-
old of the ray tubes is set based on the size of the geometric facets in the environment (in 
2D, this corresponds to the length of line segments). When rays intersect with the envi-
ronment, the algorithm computes the number of ray splits and generates the correspond-
ing splitting data accordingly. The GS   nodes of the split rays are then divided into mul-
tiple split GS  nodes according to the splitting information. Finally, the algorithm places 
the split GS  nodes into a simulation stack for iterative calculations until all rays are fully 
traced. Figure 3 presents a schematic diagram of the ray-splitting algorithm, while Algo-
rithm 1 provides the corresponding steps in pseudocode. The coordinates of a GS  node 
GSp  are determined by backtracking the propagation distance l  from the intersection 

point itp  (reflection, transmission, diffraction, etc.) between the ray and the environment 

in the opposite direction of the outgoing ray or


. 

GS it op p l r= − ⋅


 (1)

Figure 2. Binary tree structure of ray nodes.

2.1. Ray-Splitting Algorithm

The 2.5D RT algorithm proposed in this paper combines the advantages of the ray tube
method and the image method. In the algorithm, rays are designed in the form of ray tubes
with splitting attributes. During the initial path search, the uniform splitting threshold of
the ray tubes is set based on the size of the geometric facets in the environment (in 2D, this
corresponds to the length of line segments). When rays intersect with the environment, the
algorithm computes the number of ray splits and generates the corresponding splitting
data accordingly. The GS nodes of the split rays are then divided into multiple split
GS nodes according to the splitting information. Finally, the algorithm places the split
GS nodes into a simulation stack for iterative calculations until all rays are fully traced.
Figure 3 presents a schematic diagram of the ray-splitting algorithm, while Algorithm 1
provides the corresponding steps in pseudocode. The coordinates of a GS node pGS are
determined by backtracking the propagation distance l from the intersection point pit
(reflection, transmission, diffraction, etc.) between the ray and the environment in the
opposite direction of the outgoing ray

→
ro.

pGS = pit − l ·→ro (1)
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Algorithm 1. Ray-splitting algorithm

Input: Ray-splitting threshold t
Precondition: Create a stack object stack and stack the virtual root node.
While stack is not empty

Pop up the top element node ns on the stack
Obtain ray r in ns.
Calculate the intersection point between r and the scene
Calculate the ray-splitting information ξ
if ξ > t

Obtain the GS node gns of ns
Calculate the set of splitting nodes {gi} based on ξ
Mount all nodes in {gi} onto the right sibling node of ns
delete ns

End if
Trace rays and execute other programs

End While

2.2. Ray Reception Algorithm

In the SBR method, the determination of ray reception is based on the concept of a
receiving sphere. Due to the uneven distribution of rays in space, it is necessary to dynam-
ically adjust the radius of the receiving sphere to achieve appropriate energy reception.
The adaptive splitting ray tube in this algorithm effectively avoids the limitations of the
receiving sphere mechanism. As shown in Figure 4, when determining whether point p is
received by ray tube r, a GS O′ is constructed at point R relative to O. If the condition in
Equation (2) is satisfied, it can be concluded that point p is captured by ray tube r.

t1 ≤
∥∥∥∥ −→

O′P
∥∥∥∥ ≤ t1 + t2

arccos

 −→
O′P·

−→
O′E∥∥∥∥ −→

O′P·
−→
O′E

∥∥∥∥
 ≤ θ

(2)
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2.3. Electromagnetic Field Computation

Once the binary tree structure of the ray nodes is established, a depth-first search
(DFS) traversal is conducted on the ray tree, yielding multiple potential paths from the
transmitter (Tx) to the receiver (Rx). If there is a LOS condition between the Tx and Rx,
the radiation field at arrival point p is calculated according to Equation (3):

⇀
E Los =

⇀
E0

e−jkr0

r0
, (3)

where
⇀
E0 denotes the electric field strength at the position of the Tx antenna, k stands for

the wave number, and r0 is the total length of the LOS propagation path.
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In the case where NLOS exists between the Tx and Rx, the LOS field
⇀
E0 is first com-

puted using Equation (4), and then the contributions of other electromagnetic propagation

mechanisms to the field strength,
⇀
E inc, are progressively calculated along the ray path.

⇀
E NLOS =

⇀
E inc ·

n

∏
h=1

Rh ·
m

∏
i=1

Di ·
l

∏
t=1

Tt ·
n+m+l

∏
s=1

As ·
n+m+l

∏
q=1

e−jkrq , (4)

where n represents the number of reflections, m represents the number of diffractions, and t
represents the number of transmissions along the path. As is the spherical wave spreading
factor, and rq is the distance between the q-th node and the (q + 1)-th node.

The total field strength at the receiving point is obtained by combining the field
contributions from all paths and is the sum of the field strengths of all rays. It should be
noted that this paper presents two modes for combining the field strengths: Etotal , which is

the scalar combination of fields, and
⇀
E total , which is the vector combination of fields.
Etotal =

l

∑
i=1

∣∣∣∣⇀Ei

∣∣∣∣
⇀
E total =

l

∑
i=1

⇀
Ei

, (5)

where l denotes the number of ray paths.
After deriving the field strength formula, by incorporating the Tx antenna gain Gt, the

receiver antenna gain Gr, and the antenna radiated power Pt, the received power Pr at the
field point can be obtained as follows:

Pr = 10lg
(

PtxGtxGrx

(
λ

4π

)2∣∣∣ Etotal
E0

∣∣∣2)+ 30 dBm, (6)

3. Single-Site Localization Algorithm for NLOS Environment

The RT-LBS method proposed in this paper is designed for localization in complex
geometrically obstructed environments. This work effectively utilizes the RT method’s
(see Section 2) predictive capabilities in complex scenarios, extending traditional AOA
localization algorithms. The proposed algorithm enables accurate NLOS localization with a
single station. A simplified flowchart of the RT-LBS algorithm is provided in Figure 5. The
associated process can be divided into the following key steps: establishment of generalized
sources, generalized source filtering rules, generalized source weight calculation, and linear
equation solving.

3.1. Establishment of Generalized Sources

The RT algorithm can track each ray emitted from the source, thus covering most of the
geometric surface features within the environment. In the localization phase, the sensor is
treated as a virtual source. This sensor is assumed to receive a set of AOAs {ϕ1, ϕ2, . . . , ϕn}
corresponding to the electromagnetic waves emitted by an NCTS, where n represents the
number of angles received by the sensor. Furthermore, it is assumed that the angle mea-
surement error of the sensor follows a zero-mean Gaussian distribution, with the standard
deviation σϕ. Therefore, each angle interval received by the sensor is

[
ϕi − σϕ, ϕi + σϕ

]
. Next,

ray tubes are uniformly emitted within the angle interval at increments of ∆ϕ. The algorithm
tracks each ray tube and constructs a binary node tree structure. By traversing each node of
the binary tree structure, all GSs related to the sensor are obtained.

The position of the reflected GS, GSr, is the location of the mirror image of source S
in the geometric environment. The position of the diffracted GS, GSd, is located on the
diffraction wedge that generates the diffracted rays. The position of the transmitted GS,
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GSt, is obtained by backtracking the propagation distance, t, from the transmission node
location along the outgoing transmission direction. It is important to note that the involved
reflected, transmitted, and diffracted GSs are not limited to first-order. They can undergo
multiple reflections, transmissions, and diffractions, forming higher-order GSs through
combinations of these interactions. By traversing all possible propagation path nodes in
the environment, all GSs related to S are obtained. This allows the corresponding AOA
localization equations to be formulated as follows:

(x − x1) tan ϕ1 = y − y1
(x − x2) tan ϕ2 = y − y2

...
(x − xm) tan ϕm = y − ym

, (7)

where m denotes the number of the GS, and ϕ stands for the AOA received by the GS.
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3.2. Generalized Source Filtering Rules

The RT algorithm generates a large number of GSs, each carrying angle information
about the NCTS, which can form m localization equations based on the AOA. There is
exactly one valid GS in each set of GSs for a given AOA that is in a LOS environment with
the NCTS (here, we assume that there is only one multipath arriving at the receiving sensor
per angle).

Therefore, the system of linear equations formed by the GS set contains a large amount
of noise, making the system ill conditioned, which in turn causes the target localization
solution to fail to converge. To address this issue, this paper proposes a filtering method
specifically designed for the GS set. This method effectively eliminates invalid equations,
improving the stability and accuracy of the localization solution.

In the first step, by selecting two GSs from the GS set and combining them,
Pairi,j =

{
GSi, GSj

}
, i ̸= j, a system of equations can be constructed based on the two

selected GSs: {
(x − xi) tan ϕi = y − yi(
x − xj

)
tan ϕj = y − yj

. (8)

This equation has an analytical solution, denoted by Pi,j =
(
xp, yp

)
:

xp =
(xi sin ϕi−yi cos ϕi) cos ϕj−(xj sin ϕj−yj cos ϕj) cos ϕi

sin ϕj

yp =
(xi sin ϕi−yi cos ϕi) sin ϕj−(xj sin ϕj−yj cos ϕj) sin ϕi

sin ϕj

. (9)

The GS filtering rules proposed in this paper are as follows:

1. If Pi,j is located inside a building or outside the solution domain, the position is
considered invalid.

2. Construct line segments s1 and s2 connecting position Pi,j with GSi and GSj at the
intersection points nodei and nodej, respectively. If s1 and s2 intersect within the
environment, then Pi,j is considered an invalid solution.

In the second step, begin looping through the C2
m pairs of GSs, solving for the validity

of each GS pair. If Pairi,j is valid, increment the count weight w for the corresponding GSs
by 1. After traversing all GSs, delete those with a count weight w = 0.

Additionally, this paper employs a hash mapping method to eliminate duplicate GSs
with overlapping positions. During the hash mapping process, angle data for the identified
duplicate GSs are averaged. However, GSs generated by diffraction and transmission nodes
are not subject to this duplication removal.

3.3. Generalized Source Weight Calculation

Let the remaining number of GSs be l. By combining these remaining sources, C2
l

pairs of GS combinations are generated, with the solution for each pair denoted by pi,j. The
solution set

{
pi,j
}

from the C2
l combinations is then clustered based on a given inter-cluster

distance threshold d, resulting in q clusters. The center position of each cluster is denoted
by pi, i ∈ [1, q].

In this study, a generalized residual calculation method is proposed. The method first
calculates the path from pi,j to the sensor S and then, using electromagnetic computation
techniques, determines the angles and power of the n1 multipath components arriving at
S. These angles and power values are subsequently sorted in descending order based on
power magnitude. Since the power of the NCTS is unknown, it is not feasible to directly
compute the residuals based on absolute power values. To address this problem, a received
signal strength difference (RSSD)-based residual calculation method is proposed in this
study. The original RSS at the sensor is denoted by pr0, while the calculated RSS at the
sensor from the NCTS is denoted by pr1. The RSSD is then computed, and combined with
Equations (4) and (6), we can obtain
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∆pr = pr1 − pr0

= 10lg

(
PtxGtxGrx

(
λ

4π

)2
∣∣∣∣ E(1)

total
E0

∣∣∣∣2
)
+ 30 −

(
10lg

(
PtxGtxGrx

(
λ

4π

)2
∣∣∣∣ E(0)

total
E0

∣∣∣∣2
)
+ 30

)
= 20lg

(
E(1)

total

E(0)
total

)

= 20lg

∑
n1
∏

h=1
Rh ·

m1
∏

i=1
Di ·

l1
∏

t=1
Tt ·

n1+m1+l1
∏

s=1
As ·

n1+m1+l1
∏

q=1
ejkrq

∑
n0
∏

h=1
Rh ·

m0
∏

i=1
Di ·

l0
∏

t=1
Tt ·

n0+m0+l0
∏

s=1
As ·

n0+m0+l0
∏

q=1
ejkrq


. (10)

The definitions of the variables in the equation can be found in Equations (4) and (6).
From Equation (10), it can be inferred that ∆pr is solely related to the number and co-
efficients of reflections, diffractions, and transmissions between the two paths and is
independent of the initial field. Therefore, ∆pr can be effectively used to quantify the
residual between two positions.

Therefore, after obtaining the original angle–power data {ϕraw,i, ∆prraw,i}, i ∈ [1, n]
and the simulated angle–power data {ϕsim,i, ∆prsim,i}, i ∈ [1, n1], it is often the case that the
numbers of multipath components in the measured and simulated data are not identical,
i.e., n1 ̸= n. As a result, it is not possible to directly compute the residuals. This paper
proposes a generalized residual computation method, which first employs the Hungarian
algorithm (as provided by the GLPK open-source library) to determine the minimum
residual argmin

{
ϕraw,i, ϕsim,j

}
between two sets of angle data. This process yields the

angular residual rϕ and the corresponding assignment sequence. Using the assignment
sequence, the power difference residual r∆pr is calculated. In cases where n1 < n, the
method also records the number k = n − n1 of unmatched original data points.

rϕ =
min(n,n1)

∑
i=1

∥∥ϕraw,i − ϕsim,j
∥∥

2

r∆pr =
min(n,n1)

∑
i=1

∥∥∆prraw,i − ∆prsim,j
∥∥

2

(11)

After calculating the angular residual rϕ,i and the power difference residual r∆p,i for
all clusters, the maximum values rϕ,max and r∆p,max as well as the average values rϕ and
r∆p of the residuals are determined. Given that instances of unmatched points arise during
the residual calculation process, the total residual needs to be adjusted by adding k times
the average residual, as expressed by the following equation:{

rϕ,i = rϕ,i + krϕ

r∆p,i = r∆p,i + kr∆p
. (12)

Subsequently, the residuals for the cluster are normalized based on the maximum
values of residuals rϕ,max and r∆p,max, yielding the normalized residuals r̂ϕ,i and r̂∆p,i.
In addition, the size of the cluster is incorporated into the weight calculation, with the
normalized weight of the cluster denoted by ŵcluster,i. The weight expression is then derived
as follows:

wi = a
1

r̂ϕ,i + ε
+ b

1
r̂∆p,i + ε

+ cŵcluster,i, (13)

where a, b, and c represent the coefficients of the AOA weight, RSSD difference weight, and
cluster size weight, respectively. These coefficients must satisfy the condition a + b + c = 1,
which is typically set to the same weight. ε is a small decimal value, typically set to 1 × 10−6.

After determining the weight of each cluster, the weights of the individual GSs within the
clusters are updated, yielding a system of linear equations with the assigned initial weights.
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3.4. IRLS

After determining the weights for all GSs, an IRLS method based on the initial weights
is proposed to solve the system of linear equations. The AOA localization equation can be
reformulated in terms of residuals as follows:

ri(x, y) = (x − xi) tan ϕi − (y − yi). (14)

The objective function S(x, y) to be optimized in the IRLS method is the weighted sum
of squared residuals, which is the squared ℓ2-norm of the residuals, weighted as follows:

S(x, y) = W∥r∥2
2 =

m

∑
i=1

wi(ri(x, y))2, (15)

where wi denotes the weight of each equation.
In the IRLS iteration process, the initial position (x0, y0) of the NCTS is first estimated.

During each subsequent iteration, the residual ri(xi, yi) for each equation is calculated, and
the weights are updated accordingly:

wi+1 =
1

(ri(xi, yi))
2 + ε

, (16)

The estimated position after the k-th iteration can be obtained based on the least
squares method as follows: [

xi+1
yi+1

]
=

[
xi
yi

]
−
(

JTW J
)−1

JTWr, (17)

where J represents the Jacobian matrix of the residual equation, and r denotes the residual
vector.

Additionally, an error threshold must be established. Typically, the iteration stopping
criteria can be defined as follows:

1. The value of the objective function S(x, y) falls below the predefined threshold sa;
2. The Euclidean distance between consecutive iterative solutions is less than the

threshold la;
3. The number of iterations has reached the maximum limit k.

3.5. Cramér–Rao Lower Bound

The CRLB is widely used to evaluate the theoretical limit of localization accuracy
under the influence of unbiased noise. It defines the lower bound of localization error in the
presence of noise. For the AOA localization method, it is assumed that the measurement
angle errors follow a zero-mean Gaussian distribution.

ϕi = tan−1
(

y − xi
x − yi

)
+ ηi, (18)

where ηi represents the error term.
The Jacobian matrix is obtained by taking the partial derivatives with respect to

x and y:

JAOA =


∂ϕ1
∂x

∂ϕ1
∂y

∂ϕ2
∂x

∂ϕ2
∂y

...
...

∂ϕm
∂x

∂ϕm
∂y

. (19)



Sensors 2024, 24, 7925 11 of 28

In accordance with the definition of the Fisher Information Matrix (FIM), the following
expression can be derived:

I(x) =
1
σ2 JT J. (20)

Thus, the CRLB is given by the inverse of the FIM, expressed as

CRLB(x) = I(x)−1. (21)

4. Simulation and Experimental Results
4.1. Measurement Campaign
4.1.1. Measurement Equipment

The architecture of the power measurement system and the key instrumentation are
illustrated in Figure 6. A continuous-wave (CW) signal is generated by the signal generator
and amplified up to a maximum of 43 dBm by the signal amplifier. On the Rx platform,
the signal is directly fed from the receiving antenna into a spectrum analyzer, which is
controlled by a computer to capture power information. Additionally, a real-time kinematic
(RTK) system and its antenna are mounted on a cart to collect real-time positional data. Both
the transmitting and receiving antennas are vertically polarized omnidirectional antennas,
each with a height of 1.85 m.
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clock synchronization achieved through the AD9528 chip. Under anechoic chamber meas-
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Figure 6. Power measurement system architecture and key equipment. The upper half of the figure is
the block diagram of the channel sounder used in this paper. The lower half is the key equipmentof
the sounder, including the signal generator, power amplifier, spectrum analyzer, power supplier,
RTK, and antennas.

The architecture of the localization test system and the key instruments are shown in
Figure 7. The NCTS platform uses the same architecture as the transmission platform in
the power measurement system. An eight-channel uniform circular array (UCA) antenna
platform is employed to measure the AOA of incoming signals, and the multiple signal
classification (MUSIC) algorithm is used to estimate the AOA. Figure 7 presents an image
of the eight-channel circular array antenna along with the schematic of the corresponding
RF board. Four ADRV9008 chips are used to form the eight-channel receiving system,
with clock synchronization achieved through the AD9528 chip. Under anechoic chamber
measurement conditions, the direction-finding accuracy can reach approximately 1◦.
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the RF processing circuit. 
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of the technology park was generated using a handheld LiDAR device, which offers an 
accuracy of up to 5 cm. Figure 8 presents the raw laser point cloud data alongside the 
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vironment, with the scenarios in this study divided into fading measurement scenarios 
and localization test scenarios. 
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receiver speed of 5 km/h. The measurement duration for each frequency point ranges from 
approximately 450 to 500 s, with the longest measurement path extending up to 700 m. The 
street canyons in the measurement area are notably narrow, varying between 6 and 12 m in 
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buildings, resulting in NLOS conditions. As the path progresses, the prevalence of these NLOS 
conditions increases, leading to a substantial rise in propagation losses. 
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Figure 7. Localization test system architecture and key equipment. The upper half of the figure is the
block diagram of the localization test system used in this paper. The lower half is the key equipment
in the signal transmitter system, UCA direction-finding equipment, the Rx antenna array, and the RF
processing circuit.

4.1.2. Measurement Scenarios

The measurements were conducted in Xi’an, Shaanxi Province, China, within a modern
technology park comprising 23 buildings. The area spans 0.2 km2. A geometric model
of the technology park was generated using a handheld LiDAR device, which offers an
accuracy of up to 5 cm. Figure 8 presents the raw laser point cloud data alongside the
reconstructed site floor plan. All measurement scenarios are situated within an urban
environment, with the scenarios in this study divided into fading measurement scenarios
and localization test scenarios.

During the mobile power measurement process, it is essential to maintain a constant
receiver speed of 5 km/h. The measurement duration for each frequency point ranges from
approximately 450 to 500 s, with the longest measurement path extending up to 700 m. The
street canyons in the measurement area are notably narrow, varying between 6 and 12 m in
width. Throughout the measurement campaign, most of the receiver’s path is obstructed
by buildings, resulting in NLOS conditions. As the path progresses, the prevalence of these
NLOS conditions increases, leading to a substantial rise in propagation losses.
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4.2. Processing Measured Results and Verification of Models
4.2.1. Power Measurement Data Processing

A total of five frequency points were measured at 3 GHz, 3.6 GHz, 4 GHz, and 5 GHz
during the power measurement process. Figure 9 illustrates the measurement paths for
each frequency point, along with the RSS at each location, depicted using a pseudo-color
map. The Tx was positioned within a street canyon, and most of the receiver’s path
remained in NLOS conditions relative to the Tx. The detailed measurement parameters
are provided in Table 1. It is important to note that a fully automated measurement
methodology was adopted, with the RTK system and spectrum analyzer recording real-time
positional information (with centimeter-level accuracy) and power at a rate of 20 frames
per second. The location and power data were synchronized by matching the timestamps
of the positional records with those of the power measurements.
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Table 1. Configuration of measurement system.

Configuration Description

Carrier frequency 3 GHz, 3.6 GHz, 4 GHz, 5 GHz, 5.9 GHz
Signal constitution CW

Speed of Rx 5 km/h
Transmission power 38 dBm

Tx/Rx antenna Vertically polarized omnidirectional antenna
Tx/Rx antenna gain 2.7 dB

Tx position (−0.79, 5.656, 1.85) m
Route distance 640 m–700 m

Power measurements per second 20
RTK location records per second 20

Given the positional inaccuracies in the raw power measurement data, a dB-based
sliding window method was applied to process the received data. This approach mitigates
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power fluctuations caused by phase variations due to minor positional errors. The sliding
window size was set to five data points. Figure 10 presents the results after applying
the sliding filter for the five frequency points, where the black line represents the raw
measurement data, and the blue line represents the filtered data.
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4.2.2. Power Simulation and Verification

Both the algorithm presented in [39] and the algorithm proposed in this paper utilize
a combination of three reflections and two diffractions for the calculations. Table 2 lists the
material properties used in the algorithms, including the conductivity σ and the relative
dielectric constant µ. In the measurement environment in this study, the building walls
were composed of glass, the exterior wall decorations were made of aluminum, and the
ground material was concrete.

Table 2. Electrical material data in the environment [44].

Material Scenario Part σ (S/m) µ

Glass Wall 9.82 × 10−3 6.27
Aluminum Wall decorations 3.5 × 107 7.6
Concrete Ground 5.71 × 10−2 5.31

The means and standard deviations of the comparison between the proposed algo-
rithm and that in reference [39] against the measured data are summarized in Table 3. As
illustrated by Figure 11 and Table 3, the proposed algorithm provides a notably superior
performance in power prediction compared to the algorithm presented in [39]. For the
initial 2500 data points, both algorithms exhibit strong agreement with the measured data.
This is primarily due to the fact that, in regions with mild shadowing, the primary path
energy is largely dominated by low-order reflections and diffractions, resulting in stable
path search performance for both algorithms. However, under severe NLOS conditions
(e.g., data points 4000–4600 for 3 GHz in Figure 11), the main path energy becomes more
scattered, and the algorithm from reference [39] fails to capture certain multipath compo-
nents, leading to a mismatch with the measured data and a significant loss of accuracy
in deep shadowed areas. In contrast, the proposed algorithm is capable of identifying a
greater number of multipath components even in such challenging deep shadow conditions,
thereby achieving enhanced computational accuracy in NLOS scenarios.

Table 3. Error comparison between predicted and measured results.

Frequency
(GHz)

Mean (dB) Standard Deviation (dB)
RT Proposed RT RT Proposed RT

3.0 2.40 3.25 8.0 6.39
3.6 3.38 −1.72 8.94 7.37
4.0 1.82 0.89 9.05 7.72
5.0 −2.62 0.61 8.93 6.84
5.9 −3.89 2.8 8.53 7.27

4.2.3. AOA Measurement Data Processing

The angle measurement scenario was selected in a typical NLOS T-shaped street
canyon within the park, as shown in Figure 12. The sensor was positioned in a canyon
with a width of 12 m, while three source locations were placed in a canyon with a width
of 9 m. T1 and T3 were located at the two ends of the canyon, both maintaining an NLOS
condition with respect to R. T2 was placed at the intersection of the canyon, where it had a
LOS condition with respect to R.

Figures 13–15 illustrate the results of 500 AOA measurements conducted at the three
sites, T1, T2, and T3, at 5 GHz frequency. During the measurement process, both the
direction-finding sensor and the source were maintained at a height of 1.85 m and remained
stationary relative to each other. Table 4 summarizes the multipath angle power differences
extracted from the measured AOA spectra at locations T1, T2, and T3.
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Figure 11. RSS predictions and measurements in the scenario at (a) 3 GHz frequency, (b) 3.6 GHz
frequency, (c) 4 GHz frequency, (d) 5 GHz frequency, and (e) 5.9 GHz frequency. The basic RT method
refers to the approach presented in [39].
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Table 4. Measured AOAs and RSSDs.

Index
T1 T2 T3

AOA RSSD AOA RSSD AOA RSSD

1 129◦ 0 dB 90◦ 0 dB 126◦ 0 dB
2 38◦ −3.4 dB 42◦ −6.8 dB 148◦ −22.3 dB
3 123◦ −6.6 dB 51◦ −26.3 dB 79◦ −23.5 dB
4 50◦ −17.1 dB 161◦ −33.7 dB 229◦ −26.3 dB
5 126◦ −25.3 dB - - - -

4.2.4. Localization Algorithm Verification

Figures 13–15 depict the multipath clusters with higher received power along with
their corresponding propagation mechanisms. Figure 16 presents a comparison between
the average AOA spectrum derived from 500 measurements and the results obtained using
the proposed RT algorithm. The red curve represents the AOA spectrum received at point
R, the solid blue line indicates multipath clusters with energy within 40 dB of the first
arrival path, while the light blue line represents clusters with energy lower than 40 dB of
the first path. Table 5 provides the differences between the root mean square (RMS) angular
spread (AS) predicted by the proposed algorithm and the measured angular spread. Both
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the figures and tables indicate that the proposed algorithm demonstrates strong consistency
with the measured AOA spectrum.

Sensors 2024, 24, 7925 20 of 31 
 

 

 
(a) 

 
(b) 

 
(c) 
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Table 5. Angular spread error comparison between simulated and measured results.

Source Name AS Measured AS Simulated Absolute Error

T1 40.24◦ 42.82◦ 2.58◦

T2 18.23◦ 21.62◦ 3.39◦

T3 6.09◦ 3.56◦ 2.53◦

The accuracy of the proposed localization algorithm was evaluated and verified by
combining the measured angles and power values listed in Table 4. Based on the proposed
algorithm, the positioning errors for T1, T2, and T3 are documented in Table 6. All
positioning errors are within a 1 m range, with an average error of approximately 0.69 m.

Table 6. The absolute localization error of the proposed algorithm.

Source Name Position Measured Position Estimated Absolute Error

T1 (29.44, 83.94) m (30.04, 83.69) m 0.64 m
T2 (28.25, 102.92) m (28.44, 103.24) m 0.37 m
T3 (26.21, 137.33) m (25.25, 122.85) m 1.07 m

5. Efficiency and Performance Analysis of Localization Algorithm
5.1. Comparison of Localization Accuracy with Different AOA and RSSD Errors

In this section, a representative NLOS scenario is employed to evaluate the localization
accuracy of the proposed algorithm. The scenario consists of six buildings, each approxi-
mately 10 m in height, spanning an area of 110 m × 150 m. The sensor is located at point
R with coordinates (45, 21), while three NCTSs, A, B, and C, are positioned at (76, 56),
(121, 74), and (70, 90), respectively. Figure 17 depicts the simulation environment along
with the locations of points R (receiver) and A, B, and C (transmitters). The three NCTSs
(A, B, and C) are all in NLOS conditions relative to sensor R, with the degree of NLOS
conditions ranked by severity. The multipath propagation between R and stations A, B,
and C is shown in Figure 17, where solid lines represent multipath clusters with received
power within 30 dB of the first path, and dashed lines denote clusters with received power
more than 30 dB below the first path.

Single-station localization is performed for each of points A, B, and C. For point A, the
received multipath is predominantly composed of paths involving up to three reflections.
For point B, the received multipath consists mainly of paths involving up to four reflections
and one diffraction. For point C, the received multipath comprises paths involving 2 to 4
reflections and 1 diffraction.
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Figure 17. NCTS and sensor positions and a geometrical map of the scenario. The line segments
represent the multipath between the source and the sensor, distinguished using different colors.

In the first round of simulations, the propagation mechanisms involved in localization
include both reflection and diffraction. The sources are positioned at points A, B, and
C, with errors due to received power being neglected. The AOA error is assumed to
follow a zero-mean distribution with standard deviations ranging from 0.1◦ to 6◦. For each
error value, 10,000 simulations were performed. Figure 18 presents a comparison of the
localization errors at points A, B, and C against the CRLB. The results demonstrate that the
accuracy of the proposed RT-LBS algorithm approaches the CRLB. Moreover, considering
the number of multipath components (MPCs) and the propagation distance between points
A, B, C, and R, it can be deduced that point A exhibits the highest localization accuracy due
to the larger number of MPCs and its relatively shorter propagation distance. In contrast,
point C shows the lowest localization accuracy, attributable to fewer MPCs and a longer
propagation distance.
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Figure 18. A comparison of the proposed localization algorithm’s accuracy with the CRLB. (a) The
source at location A; (b) the source at location B; (c) the source at location C.

In the second round of simulations, the localization accuracy of the algorithm is
evaluated under the combined influence of both angle and power errors. The RMSE
is calculated based on 10,000 independent simulations. As in the first simulation, the
AOA error is modeled as a Gaussian random variable with zero mean and a standard
deviation ranging from 0.1◦ to 6◦. The RSS deviation, which directly affects the received
multipath power, is also modeled as a Gaussian random variable with zero mean and a
standard deviation between 0 dB and 10 dB. Figure 19 illustrates the localization accuracy
at point A under different AOA and RSSD error conditions. The proposed algorithm
demonstrates that, as the RSSD error increases, the localization accuracy is impacted to
some extent. However, under low-AOA-error conditions, even with RSSD errors reaching
up to 10 dB, the localization accuracy remains relatively high. In contrast, under high-AOA-
error conditions, the localization accuracy degrades linearly with increasing RSSD error.
Figures 20 and 21 present the localization errors at points B and C, respectively, for varying
AOA and RSSD errors.
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Figure 21. Localization error at point C with different AOA and RSSD errors.

The simulation results at points A, B, and C demonstrate that the proposed algorithm
is capable of accurately localizing the source not only in environments with low-order
reflections and diffractions (e.g., point A) but also in more complex scenarios involving
higher-order reflections (e.g., points B and C). Given the prediction accuracy of the ray-
tracing algorithm proposed in this study, which is approximately 6 dB, the localization
accuracy at point A can be maintained within 2 m when the angle error is around 1◦. Simi-
larly, at points B and C, the accuracy remains within 5 m under the same conditions. These
findings highlight the robustness of the proposed algorithm across a range of propagation
environments and error conditions.
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5.2. Localization Error Analysis Across the Entire Plane

In this section, a study of the localization error across the plane is conducted based on
the scenario shown in Figure 17. The direction-finding sensor is placed at point R, while
the NCTSs are uniformly distributed over a rectangular area (120 m × 80 m) with a spacing
of 0.5 m. Both the sensor and the NCTSs are equipped with omnidirectional antennas. The
power of the non-cooperative sources is set to 1.0 W, and the operating frequency is 5 GHz.
A combination of up to four reflections and one diffraction is configured for the GS search.

As the proposed algorithm is fundamentally based on the ray-tracing technique, the
accuracy of the localization process is directly contingent upon the precision of the ray-
tracing algorithm. However, during planar localization, as the source position shifts, certain
MPCs may emerge or disappear. This dynamic evolution of MPCs gives rise to regions
characterized by significant multipath variability, where the multipath features of adjacent
coordinate points exhibit substantial disparities. When the source is located within such
regions of pronounced multipath fluctuations, the increase in angular error may lead to a
corresponding escalation in localization error. This phenomenon, wherein rapid changes
in multipath characteristics result in localization inaccuracies, is referred to as multipath
fluctuation error (MFE).

Furthermore, multipath similarity constitutes another critical factor that can contribute
to localization error, which is represented by the multipath similarity error (MSE). In this
paper, multipath similarity is defined as the condition where the objects encountered at
each propagation node across different MPCs are identical, and the AOA and power levels
exhibit high degrees of similarity. In regions where multipath similarity prevails, the
localization algorithm is likely to yield similar solutions, thereby linking the localization
error to the extent of the similarity region.

Thus, in planar localization, both MFE and MSE emerge as significant sources of degra-
dation in the accuracy of the localization algorithm. These factors underscore the challenges
posed by complex multipath environments in achieving high-precision localization.

To address the challenges posed by MFEs and MSEs, this paper introduces a displace-
ment correction method based on a multipath similarity displacement matrix (MSDM).
Figure 22a–f illustrate the MSDM under AOA error deviations ranging from 0.1◦ to 6◦. Each
element in these matrices represents the average adjacent multipath similarity distance
(MSD) at the corresponding coordinate point. For instance, if the average MSD at point p is
denoted by d, it can be inferred that the MPCs within a circular region centered at point p,
with a radius of d, exhibit similar characteristics. As the angular deviation increases, the
average adjacent MSD in the matrix also expands, indicating that the range of multipath
similarity grows progressively larger. This relationship underscores the increasing spatial
correlation of MPCs as angular errors rise.

The displacement compensation expansion method expands the single coordinate
solution in the GS cluster to nine coordinate solutions, as illustrated in Figure 23. To account
for multipath fluctuation errors, the algorithm compensates by extending the solution by
a minimum resolution distance around the coordinate point. For multipath similarity
errors, the algorithm expands the solution by the average adjacent distance d from the
corresponding matrix around the coordinate point, serving as a compensatory solution.

Figures 24–29 illustrate the planar localization accuracy distribution for both the
original algorithm and the displacement correction algorithm. The optimized localization
algorithm significantly improves accuracy, particularly at the shadow boundaries. The
blank areas in the figures represent regions with no solution, primarily due to an insufficient
number of multipath signals reaching these areas. 3

Table 7 summarizes the key performance metrics of the localization algorithm with
the displacement correction method applied. The average localization accuracy of the
algorithm improves by approximately 0.5 m, with the proportion of localization errors less
than 10 m increasing by an average of 1.4%.
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Figure 23. Schematic diagram of displacement compensation expansion method. 

Figures 24–29 illustrate the planar localization accuracy distribution for both the orig-
inal algorithm and the displacement correction algorithm. The optimized localization al-
gorithm significantly improves accuracy, particularly at the shadow boundaries. The 
blank areas in the figures represent regions with no solution, primarily due to an insuffi-
cient number of multipath signals reaching these areas. 
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Figure 24. Planar Localization Error Distribution with 0.1° AOA error. (a) Original localization al-
gorithm; (b) localization algorithm with MSDM. 

Figure 22. MSD distribution at (a) 0.1◦ AOA error, (b) 0.5◦AOA error, (c) 1◦AOA error, (d) 2◦AOA
error, (e) 4◦AOA error, and (f) 6◦AOA error.
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Figure 24. Planar Localization Error Distribution with 0.1° AOA error. (a) Original localization al-
gorithm; (b) localization algorithm with MSDM. 

Figure 24. Planar Localization Error Distribution with 0.1◦ AOA error. (a) Original localization
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Figure 29. Planar Localization Error Distribution with 6◦ AOA error. (a) Original localization
algorithm; (b) localization algorithm with MSDM.

Table 7. A comparison of the mean error and localization accuracy within 10 m between the original
localization algorithm and the algorithm with the MSDM applied.

AOA Error
Mean Error Localization Error Rate (<10 m)

Original with MSDM Original with MSDM

0.1◦ 0.367 m 0.234 m 99.36% 99.82%
0.5◦ 1.120 m 0.956 m 98.51% 99.19%
1.0◦ 2.053 m 1.840 m 96.81% 97.88%
2.0◦ 4.032 m 3.495 m 92.71% 94.17%
4.0◦ 7.670 m 6.950 m 81.54% 83.38%
6.0◦ 11.036 m 9.780 m 71.16% 74.08%

5.3. GPU-Accelerated Analysis of Localization Algorithm

The most computationally intensive component of the proposed localization algorithm
lies in the path-finding process within the ray-tracing algorithm. Consequently, the acceler-
ation method introduced in this work is specifically designed to optimize the path-finding
procedure. As illustrated in Figure 30, the technical workflow of the proposed acceleration
method proceeds as follows: First, the CPU performs a DFS of the binary tree structure,
storing the resulting path node sequences in GPU memory. Next, the path node capture
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kernel function is employed to compute the valid path node sequences for the captured
receiver points. Finally, the path-finding kernel function is invoked to search for the paths
corresponding to each valid node and to apply the necessary corrections. This approach
significantly enhances computational efficiency while maintaining path accuracy.
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Figure 30. Schematic diagram of GPU acceleration algorithm.

To assess the computational efficiency of the proposed algorithm, simulations were
performed using a detailed electronic map of Xi’an, Shaanxi Province, China, extracted
from OpenStreetMap. This dataset comprises 6189 buildings and more than 35,700 facets.
The transmitter was positioned at the center of the map, elevated to a height of 200 m, with
a transmission power set to 50 W and an operating frequency of 1 GHz. The receivers
were placed 2 m above ground level and uniformly distributed across a rectangular area
of 2 km × 2 km, with a spacing of 1 m between them. Both the transmitter and receivers
employed vertically polarized omnidirectional antennas.

The proposed algorithm is fully implemented in C++/CUDA C++. Simulations were
conducted on a desktop computer equipped with an Intel(R) Core(TM) i9-13900K CPU, an
NVIDIA RTX 3090 GPU, and 128 GB of memory. To evaluate the computational efficiency of
the GPU-accelerated algorithm, partial surface simulations were carried out for the scenario
depicted in Figure 31, covering a total of 35,688 points. The simulation parameters were
configured to allow up to three reflections and one diffraction. The simulation runtimes are
presented in Figure 32 and Table 8, demonstrating that the GPU-based approach achieved
a remarkable speedup of approximately 4835.6 times compared to the single-core CPU
implementation, with an average computation time of 7 milliseconds per receiving point.
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Table 8. Efficiency test of algorithm acceleration method.

Acceleration Type Time Consumed Speed Up

CPU Single Thread 1,214,122.13 s 1×
CPU Multi-Thread 190,899.7 s 6.4×

GPU 251.08 s 4835.6×

6. Discussion and Future Work

Based on the series of empirical measurements and simulation tests presented in this
paper, the effectiveness and robustness of the proposed NLOS localization algorithm have
been demonstrated. However, we have identified two primary limitations of the proposed
algorithm that warrant further exploration in future research:

(1) The geometric modeling in this study utilizes high-precision LiDAR point cloud data
with an accuracy of up to 5 cm. However, this precision is negligible compared to
errors caused by multipath propagation, meaning potential biases from building struc-
ture inaccuracies in digital maps are not accounted for here. Even with lower-accuracy
maps, such as those sourced from platforms like OpenStreetMap, the prediction ac-
curacy of the ray-tracing algorithm remains acceptable [45]. However, in practical
applications, such high-precision data are rarely available. Therefore, future research
should address errors from low-accuracy digital maps to enhance the algorithm’s
adaptability and performance in real-world scenarios.

(2) The proposed localization algorithm relies on RT, with its accuracy directly affect-
ing localization performance. However, the current model overlooks the impact of
vegetation penetration, reducing prediction accuracy in vegetated areas.

Furthermore, we suggest the following areas as key focal points for future research:

(1) Given the above limitation regarding vegetation, future work should integrate a
vegetation penetration model to improve localization accuracy in such environments.

(2) The localization algorithm was evaluated in urban NLOS scenarios, but NLOS condi-
tions are often more prominent indoors, suggesting the need for further investigation.
The current 2D RT algorithm also struggles with propagation mechanisms involving
floors and ceilings in enclosed spaces. Developing a 3D localization algorithm could
significantly improve accuracy in such environments.

7. Conclusions

This paper proposes a single-station localization method that integrates an RT algo-
rithm designed explicitly for NLOS environments. In complex NLOS scenarios, signals
emitted by the source undergo multipath propagation before reaching the sensor. The
proposed method exploits the AOA and the received power differences to construct a GS
set with initial weights based on a GS filtering rule. Each GS corresponds to a nonlinear
equation derived from the AOA. By incorporating the IRLS method, the algorithm achieves
high-accuracy target localization. Simulations and experiments demonstrate that position-
ing accuracy can achieve meter-level or even sub-meter-level precision, closely approaching



Sensors 2024, 24, 7925 27 of 28

the CRLB. A key advantage of the proposed approach is that it relies solely on the AOA
spectrum from a single station, making it highly practical for engineering applications.
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