Cost-Effective Optical Wireless Sensor Networks: Enhancing Detection of Sub-Pixel Transmitters in Camera-Based Communications
<p>Concept on the use of OCC in Smart Cities.</p> "> Figure 2
<p>Communications data frame.</p> "> Figure 3
<p>Algorithm phases.</p> "> Figure 4
<p>Indoor experimental setup. The resulting link range in the depicted corridor was 32 m.</p> "> Figure 5
<p>Outdoor daytime experimental setup. The resulting link range was 7 m.</p> "> Figure 6
<p>Nighttime experimental setup. The resulting link range was between 45 and 75 m.</p> "> Figure 7
<p>Procedure phases.</p> "> Figure 8
<p>Data frame received directly from the transmitter (<b>a</b>) and from a reflection point on the ground (<b>b</b>).</p> "> Figure 9
<p>Boxplot of processing times by scenario for simplification (<b>a</b>) and correlation (<b>b</b>) phases.</p> ">
Abstract
:1. Introduction
1.1. Optical Camera Communications
1.2. Related Works
1.3. OCC as an Enabler for 6G
2. Discovery Algorithm
3. Methodology
3.1. Experimental Setup
3.2. Procedures
3.3. Metrics
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burciu, L.M.; Fotescu, R.P.; Constantinescu, R.C.; Svasta, P.; Moise, M. Analysis of the Degree of Congestion of WiFi, Bluetooth and ZigBee Communication Media. In Proceedings of the 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC), Sibiu, Romania, 13–16 September 2022; pp. 614–617. [Google Scholar] [CrossRef]
- IEEE Standard Association 802.15.7; IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. IEEE: Piscataway, NZ, USA, 2011.
- Zhou, H.; Zhang, M.; Ren, X. Design and Implementation of Wireless Optical Access System for VLC-IoT Networks. J. Light. Technol. 2023, 41, 2369–2380. [Google Scholar] [CrossRef]
- Matus, V.; Guerra, V.; Jurado-Verdu, C.; Zvanovec, S.; Perez-Jimenez, R. Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation. Sensors 2021, 21, 2739. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Burbano, P. Optical Camera Communication for Internet of Things in Urban Environments. Ph.D. Thesis, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 2021. [Google Scholar]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R. Optical camera communication for smart cities. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Qingdao, China, 22–24 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Aguiar Castillo, L.; Yánez, V.; Torres, J.; Rabadan, J.; Pérez-JIménez, R. Survey on Optical Wireless Communications-Based Services Applied to the Tourism Industry: Potentials and Challenges. Sensors 2021, 21, 6282. [Google Scholar] [CrossRef]
- Lin, C.; Lin, B.; Tang, X.; Zhou, Z.; Zhang, H.; Chaudhary, S.; Ghassemlooy, Z. An Indoor Visible Light Positioning System Using Artificial Neural Network. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Saeed, N.; Guo, S.; Park, K.H.; Al-Naffouri, T.Y.; Alouini, M.S. Optical camera communications: Survey, use cases, challenges, and future trends. Phys. Commun. 2019, 37, 100900. [Google Scholar] [CrossRef]
- Chavez-Burbano, P.; Rabadan, J.; Guerra, V.; Perez-Jimenez, R. Flickering-Free Distance-Independent Modulation Scheme for OCC. Electronics 2021, 10, 1103. [Google Scholar] [CrossRef]
- Eso, E.; Teli, S.; Hassan, N.B.; Vitek, S.; Ghassemlooy, Z.; Zvanovec, S. 400 m rolling-shutter-based optical camera communications link. Opt. Lett. 2020, 45, 1059–1062. [Google Scholar] [CrossRef]
- Seguel, F.; Azurdia-Meza, C.; Krommenacker, N.; Charpentier, P.; Bombardier, V.; Carreno, C. Miner Video Tracking and Identification Using Optical Camera Communications in a Wireless Multimedia Sensor Network. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Matus, V.; Guerra, V.; Jurado-Verdu, C.; Rabadan, J.; Perez-Jimenez, R. Demonstration of a Sub-Pixel Outdoor Optical Camera Communication Link. IEEE Lat. Am. Trans. 2021, 19, 1798–1805. [Google Scholar] [CrossRef]
- Mederos-Barrera, A.; Jurado-Verdu, C.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R. Design and Experimental Characterization of a Discovery and Tracking System for Optical Camera Communications. Sensors 2021, 21, 2925. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.; Sethuraman, T.V.; Gruteser, M.; Dana, K.J.; Jain, S.; Mandayam, N.B.; Ashok, A. Camera-Based Light Emitter Localization Using Correlation of Optical Pilot Sequences. IEEE Access 2022, 10, 24368–24382. [Google Scholar] [CrossRef]
- Gonçalves, A.L.R.; Maia, Á.H.A.; Santos, M.R.; de Lima, D.A.; Neto, A.M. Visible light positioning and communication methods and their applications in intelligent mobility. IEEE Lat. Am. Trans. 2021, 19, 1883–1894. [Google Scholar] [CrossRef]
- Majlesein, B.; Matus, V.; Jurado-Verdu, C.; Guerra, V.; Rabadan, J.; Rufo, J. Experimental Characterization of Sub-Pixel Underwater Optical Camera Communications. In Proceedings of the 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2022; pp. 150–155. [Google Scholar] [CrossRef]
- Nagura, T.; Yamazato, T.; Katayama, M.; Yendo, T.; Fujii, T.; Okada, H. Tracking an LED array transmitter for visible light communications in the driving situation. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems, York, UK, 19–22 September 2010; pp. 765–769. [Google Scholar]
- Nguyen, T.; Le, N.; Jang, Y. Asynchronous Scheme for Optical Camera Communication-Based Infrastructure-to-Vehicle Communication. Int. J. Distrib. Sens. Netw. 2015, 11, 908139. [Google Scholar] [CrossRef]
6G Requirement | Target Value | OCC Support |
---|---|---|
Peak Data Rate | Up to 1 Tbps | No |
User-Experienced Data Rate | 1 Gbps or higher | No |
User Plane Latency | 100 µs or lower | No |
Mobility | Up to 1000 km/h | No |
Connection Density | Up to devices/km2 | Yes |
Energy Efficiency | 10–100 times better than 5G | Yes |
Peak Spectral Efficiency | Three times higher than 5G | Yes |
Area Traffic Capacity | Up to 1 Gbps/m2 | Yes |
Success probability (Reliability) | 1–10−7 | Yes |
Signal Bandwidth | Up to 1 GHz or higher | No |
Positioning Accuracy | Centimeter-level precision | Yes |
Coverage | 3D (terrestrial–satellite–aerial) | Yes |
Timeliness | Real-time data emphasis | No |
Security and Privacy | Ensured confidentiality, integrity, authentication | Yes |
Capital and Operational Expenditure | Cost-effective networks | Yes |
Arduino Nano 33 IoT | |
Microcontroller | Low-power ARM MCU SAMD21 Cortex®-M0+ 32-bit |
Clock Speed | 48 MHz |
Flash Memory | 256 Kb |
Power Supply | 3.3 V, 2.5 A |
RGB LED | |
Model | L-154A4SURKQBDZGW |
Manufacturer | Kingbright |
Size | 5 × 8.6 mm |
Wavelength | 470 nm, 525 nm, 630 nm |
Luminosity | 150–300 mcd, 500–1000 mcd, 600–1300 mcd |
White LED | |
Model | SLD430WBD2PT3 |
Manufacturer | ROHM Semiconductor |
Size | 5 × 3 × 3 mm |
Luminosity | 1850 mcd |
Raspberry Pi | |
Model | Raspberry Pi 3 Model B |
Manufacturer | Raspberry Pi Foundation |
Operating System | Raspbian-32 bits |
Processor | Broadcom BCM2837 SoC |
Storage | 1 GB of RAM |
Power Supply | 5 V, 2.5 A |
Camera Module V2 | |
Model | IMX219—V2 module |
Manufacturer | Raspberry Pi Foundation |
Acquisition Mode | Rolling Shutter |
Maximum Resolution | 3280 × 2464 |
Used Resolution | 1920 × 1080 |
Maximum Gain | 16 B |
Maximum Frame Rate | 30 FPS |
FOV | 62.2 × 48.8 |
Scenario | Transmitters Detected | ||
---|---|---|---|
2/4 | 3/4 | 4/4 | |
Indoor, low luminosity | 0% | 29% | 71% |
Indoor, medium luminosity | 14% | 57% | 29% |
Indoor, high luminosity | 0% | 21% | 79% |
Daytime outdoor, low luminosity | 82% | 18% | 0% |
Daytime outdoor, high luminosity | 0% | 45% | 55% |
Nighttime outdoor | 0% | 0% | 100% |
Scenario | LED Color | Average SNR (dB) | Average BER |
---|---|---|---|
Daytime Indoor | Red | 20.6 | 2 × 10−20 |
Blue | 21 | 7.6 × 10−22 | |
Green | 26.1 | 2.5 × 10−90 | |
White | 20.8 | 6 × 10−21 | |
Daytime Outdoor | Red | 19 | 7 × 10−16 |
Blue | 24 | 2 × 10−30 | |
Green | - | - | |
White | - | - | |
Nighttime Outdoor | Red | - | - |
Blue | 27.2 | 3 × 10−110 | |
Green | - | - | |
White | 21.5 | 6.3 × 10−33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Yánez, I.; Guerra, V.; Rabadán, J.; Pérez-Jiménez, R. Cost-Effective Optical Wireless Sensor Networks: Enhancing Detection of Sub-Pixel Transmitters in Camera-Based Communications. Sensors 2024, 24, 3249. https://doi.org/10.3390/s24103249
Rodríguez-Yánez I, Guerra V, Rabadán J, Pérez-Jiménez R. Cost-Effective Optical Wireless Sensor Networks: Enhancing Detection of Sub-Pixel Transmitters in Camera-Based Communications. Sensors. 2024; 24(10):3249. https://doi.org/10.3390/s24103249
Chicago/Turabian StyleRodríguez-Yánez, Idaira, Víctor Guerra, José Rabadán, and Rafael Pérez-Jiménez. 2024. "Cost-Effective Optical Wireless Sensor Networks: Enhancing Detection of Sub-Pixel Transmitters in Camera-Based Communications" Sensors 24, no. 10: 3249. https://doi.org/10.3390/s24103249