UAV Path Optimization for Angle-Only Self-Localization and Target Tracking Based on the Bayesian Fisher Information Matrix
<p>Geometry for UAV self-localization and target tracking using beacon bearings and the target AOA. The UAV location <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">s</mi> <mi>k</mi> </msub> </semantics></math>, its orientation angle <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mi>k</mi> </msub> </semantics></math> and target location <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">p</mi> <mi>k</mi> </msub> </semantics></math> are unknown and are to be estimated jointly from noisy beacon bearing and target AOA measurements.</p> "> Figure 2
<p>Illustration of the set of permissible waypoints <math display="inline"><semantics> <msub> <mi mathvariant="script">S</mi> <mi>k</mi> </msub> </semantics></math> and maximum turnrate <math display="inline"><semantics> <msub> <mi>ϑ</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> </semantics></math>.</p> "> Figure 3
<p>Modified projection algorithm for UAV path optimization.</p> "> Figure 4
<p>Computational architecture for UAV path optimization and target tracking. The A-optimality, D-optimality and projection algorithms differ in the way <math display="inline"><semantics> <msubsup> <mi>ϑ</mi> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>∗</mo> </msubsup> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> </mrow> </semantics></math>, is computed.</p> "> Figure 5
<p>Optimal UAV paths for a stationary target at <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV location is marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 6
<p>Optimal UAV paths for a stationary target at <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV location is marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 6 Cont.
<p>Optimal UAV paths for a stationary target at <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV location is marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 7
<p>Optimal UAV paths for a stationary target at <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV location is marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 8
<p>Optimal UAV paths for target tracking (<math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>) computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV and target locations are marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 9
<p>Optimal UAV paths for target tracking (<math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>) computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV and target locations are marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 10
<p>Optimal UAV paths for target tracking (<math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>) computed by the (<b>a</b>) A-optimality algorithm, (<b>b</b>) D-optimality algorithm and (<b>c</b>) projection algorithm. (<b>d</b>) A close-up of the projection algorithm. The initial UAV and target locations are marked with “<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>”. Black dots and lines indicate the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for initial and final EKF target location estimates. Gray dots and lines show the 2-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> error ellipses for intermediate EKF estimates.</p> "> Figure 11
<p>RMSE for EKF target location estimates for a stationary target at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 12
<p>RMSEfor EKF target location estimates for a manoeuvring target at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- An augmented Kalman filter formulation for joint angle-only self-localization (including orientation estimation) and target tracking, which provides an optimal and convenient solution to deal with self-localization and orientation uncertainties, and their impact on target tracking performance.
- A- and D-optimality criteria for UAV path optimization using an approximate BFIM and focusing on target location estimates in the augmented Kalman filter state vector for accurate optimization results in the face of self-localization uncertainties.
- Analysis of measurement noise effects on optimal UAV paths generated by A- and D-optimality criteria, exposing some shortcomings of BFIM-based optimization.
- Three UAV path optimization algorithms tailored for joint self-localization and target tracking based on the A- and D-optimality criteria, and the closed-form projection algorithm in [20].
2. Problem Definition
3. Augmented State-Space Model for Self-Localization and Tracking
- State Prediction:
- State Update:
4. UAV Path Optimization
4.1. Estimation Bound for the EKF
4.2. UAV Path Optimization Algorithm Based on the A-Optimality Criterion
4.3. UAV Path Optimization Algorithm Based on the D-Optimality Criterion
- 1.
- 2.
- Re-calculate and in (33) for each candidate waypoint .
- 3.
- 4.
- Calculate for each in Step 3, and find for which is minimized.
4.4. Modified Projection Algorithm
- 1.
- Given , , , , and s, calculate the minor axis of the error ellipse of from the eigenvector of associated with its smallest eigenvalue.
- 2.
- Calculate the predicted target range .
- 3.
- Find , the intersection of the line extension of the minor axis with the circle of radius centred at , closest to .
- 4.
- Calculate the waypoint vector and the optimal heading angle
- 5.
- Find the optimal heading change .
- 6.
- If , then the next optimal waypoint is . Otherwise, restrict the heading angle for to the maximum turnrate: .
- 7.
- Find the actual UAV location using (44).
5. Simulation Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimshoni, I. On mobile robot localization from landmark bearings. IEEE Trans. Robot. Autom. 2002, 18, 971–976. [Google Scholar] [CrossRef]
- Hmam, H. Mobile Platform Self-Localization. In Proceedings of the 2007 Information, Decision and Control, Adelaide, SA, Australia, 12–14 February 2007; pp. 242–247. [Google Scholar] [CrossRef]
- Dogancay, K. Self-localization from landmark bearings using pseudolinear estimation techniques. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2361–2368. [Google Scholar] [CrossRef]
- Shao, H.J.; Zhang, X.P.; Wang, Z. Efficient Closed-Form Algorithms for AOA Based Self-Localization of Sensor Nodes Using Auxiliary Variables. IEEE Trans. Signal Process. 2014, 62, 2580–2594. [Google Scholar] [CrossRef]
- Adorni, G.; Cagnoni, S.; Enderle, S.; Kraetzschmar, G.K.; Mordonini, M.; Plagge, M.; Ritter, M.; Sablatnög, S.; Zell, A. Vision-based localization for mobile robots. Robot. Auton. Syst. 2001, 36, 103–119. [Google Scholar] [CrossRef]
- Kang, H.D.; Jo, K.H. Self-localization of autonomous mobile robot from the multiple candidates of landmarks. In Proceedings of the Optomechatronic Systems III, Stuttgart, Germany, 12–14 November 2002; Yoshizawa, T., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2002; Volume 4902, pp. 428–435. [Google Scholar] [CrossRef]
- Djugash, J.; Singh, S.; Kantor, G.; Zhang, W. Range-only SLAM for robots operating cooperatively with sensor networks. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 2078–2084. [Google Scholar] [CrossRef]
- Benbadis, F.; Obraczka, K.; Cortes, J.; Brandwajn, A. Exploring Landmark Placement Strategies for Self-Localization in Wireless Sensor Networks. In Proceedings of the 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 3–7 September 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Guerrero, P.; Ruiz-del Solar, J. Improving Robot Self-localization Using Landmarks’ Poses Tracking and Odometry Error Estimation. In Proceedings of the RoboCup 2007: Robot Soccer World Cup XI, Atlanta, GA, USA, 9–10 July 2007; Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 148–158. [Google Scholar]
- Vemula, M.; Bugallo, M.F.; Djurić, P.M. Sensor self-localization with beacon position uncertainty. Signal Process. 2009, 89, 1144–1154. [Google Scholar] [CrossRef]
- Ogiso, S.; Kawagishi, T.; Mizutani, K.; Wakatsuki, N.; Zempo, K. Self-localization method for mobile robot using acoustic beacons. Robomech J. 2015, 2, 12. [Google Scholar] [CrossRef]
- Schaff, C.; Yunis, D.; Chakrabarti, A.; Walter, M.R. Jointly optimizing placement and inference for beacon-based localization. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6609–6616. [Google Scholar] [CrossRef]
- Engel, N.; Hoermann, S.; Horn, M.; Belagiannis, V.; Dietmayer, K. DeepLocalization: Landmark-based Self-Localization with Deep Neural Networks. arXiv 2019, arXiv:1904.09007. [Google Scholar]
- Karpenko, S.; Konovalenko, I.; Miller, A.; Miller, B.; Nikolaev, D. UAV Control on the Basis of 3D Landmark Bearing-Only Observations. Sensors 2015, 15, 29802–29820. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Lei, X.; Duan, Z.; Zheng, Z. A Minimalist Self-Localization Approach for Swarm Robots Based on Active Beacon in Indoor Environments. Sensors 2023, 23, 4926. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.L.; Law, Y.W.; Dogancay, K.; Ho, S.Y.; Chahl, J. Optimal Maneuvering for Autonomous Vehicle Self-Localization. Entropy 2022, 24, 1169. [Google Scholar] [CrossRef] [PubMed]
- Dogancay, K. Single- and multi-platform constrained sensor path optimization for angle-of-arrival target tracking. In Proceedings of the 2010 18th European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010; pp. 835–839. [Google Scholar]
- Dogancay, K. UAV Path Planning for Passive Emitter Localization. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1150–1166. [Google Scholar] [CrossRef]
- Couturier, A.; Akhloufi, M.A. A review on absolute visual localization for UAV. Robot. Auton. Syst. 2021, 135, 103666. [Google Scholar] [CrossRef]
- Dogancay, K. Optimal Geometries for AOA Localization in the Bayesian Sense. Sensors 2022, 22, 9802. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xu, S.; Rice, F.; Dogancay, K. Angle-Of-Arrival Target Tracking Using A Mobile UAV In External Signal-Denied Environment. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Van Trees, H.L.; Bell, K.L.; Tian, Z. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Filtering Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Fedorov, V.V. Theory of Optimal Experiments; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Goodwin, G.C.; Payne, R.L. Dynamic System Identification: Experiment Design and Data Analysis; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Uciński, D. Optimal Measurement Methods for Distributed Parameter System Identification; CRC Press: Boca Radon, FL, USA, 2005. [Google Scholar]
- Bar-Shalom, Y.; Blair, W.D. (Eds.) Multitarget-Multisensor Tracking: Applications and Advances; Artech House: Boston, MA, USA, 2000; Volume III. [Google Scholar]
- Anderson, B.D.O.; Moore, J.B. Optimal Filtering; Prentice Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Daum, F.E. Extended Kalman Filters. In Encyclopedia of Systems and Control; Baillieul, J., Samad, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 751–753. [Google Scholar] [CrossRef]
- Guner, D.R.L. Inertial Navigation System Improvement Using Ground Station Data. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2012. [Google Scholar]
Algorithm | |||
---|---|---|---|
A-optimality | 2.61 | 1.19 | 1.04 |
D-optimality | 1.26 | 0.49 | 0.68 |
Projection | 0.15 | 0.35 | 0.50 |
Modified A-optimality () | 2.22 | 0.41 | 0.43 |
Modified D-optimality () | 988.6 | 33.3 | 39.8 |
Algorithm | |||
---|---|---|---|
A-optimality | 2.42 | 1.81 | 1.63 |
D-optimality | 1.56 | 0.89 | 0.99 |
Projection | 0.16 | 0.44 | 0.59 |
Modified A-optimality () | 2.49 | 0.65 | 0.79 |
Modified D-optimality () | 967 | 31.1 | 37.3 |
Algorithm | |||
---|---|---|---|
A-optimality | 2.26 | 1.25 | 1.08 |
D-optimality | 1.06 | 0.38 | 0.48 |
Projection | 0.05 | 0.23 | 0.37 |
Algorithm | |||
---|---|---|---|
A-optimality | 2.45 | 1.84 | 1.82 |
D-optimality | 1.30 | 0.93 | 0.91 |
Projection | 0.09 | 0.30 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogancay, K.; Hmam, H. UAV Path Optimization for Angle-Only Self-Localization and Target Tracking Based on the Bayesian Fisher Information Matrix. Sensors 2024, 24, 3120. https://doi.org/10.3390/s24103120
Dogancay K, Hmam H. UAV Path Optimization for Angle-Only Self-Localization and Target Tracking Based on the Bayesian Fisher Information Matrix. Sensors. 2024; 24(10):3120. https://doi.org/10.3390/s24103120
Chicago/Turabian StyleDogancay, Kutluyil, and Hatem Hmam. 2024. "UAV Path Optimization for Angle-Only Self-Localization and Target Tracking Based on the Bayesian Fisher Information Matrix" Sensors 24, no. 10: 3120. https://doi.org/10.3390/s24103120