Wireless Underground Sensor Communication Using Acoustic Technology
<p>Underground-to-underground multi-hop communication in a farm setting with the last buried node communicating through the soil and air to an above-ground gateway.</p> "> Figure 2
<p>Horizontal shear applied to a thin Kelvin–Voigt solid. Total resistance to shearing deformation is the sum of an elastic (spring) component and a viscous (dashpot) component [<a href="#B41-sensors-24-03113" class="html-bibr">41</a>].</p> "> Figure 3
<p>Impact of frequency on signal propagation for various soil types: (<b>a</b>) clay, (<b>b</b>) silty clay loam, (<b>c</b>) clay loam, and (<b>d</b>) sandy loam at fixed soil moisture.</p> "> Figure 4
<p>Impact of compaction at different moisture levels: (<b>a</b>) 10% moisture level, and (<b>b</b>) 17% moisture level on signal propagation.</p> "> Figure 5
<p>Impact of moisture content (% vol) on signal propagation.</p> ">
Abstract
:1. Introduction
- (i)
- Investigation of existing literature for acoustic wave propagation models in soil for agricultural application. This work presents a comparative summary based on some key parameters of soil which would allow us to discern a suitable theoretical framework capable of analysing acoustic signal attenuation below ground.
- (ii)
- The analysis of existing acoustic models for their suitability for agricultural soil. This is the first time such analysis is done from an agricultural usage perspective.
- (iii)
- The analysis of acoustic signal attenuation involves the consideration of pivotal agricultural soil parameters such as soil composition, compaction, and moisture level which impact the attenuation of acoustic waves underground. The findings of this study will guide the development of a BG2BG wireless communication system with a better transmission range compared to existing technology including RF.
2. Modern WUSN Technologies and Advancement of Acoustics
3. Acoustic Wave Propagation Model through Soil
Kelvin–Voigt Model
4. Methods
4.1. Software
4.2. Soil Properties
4.3. Data Analysis
5. Results
5.1. Impact of Frequency on Acoustic Signal Propagation
5.2. Impact of Compaction or Bulk Density on Signal Propagation
5.3. Impact of Moisture on Acoustic Signal Propagation
5.4. Model Verification and Comparison of Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA | precision agriculture |
RF | radio frequency |
EM | electromagnetic |
BG2BG | below ground-to-below ground |
VWC | volumetric water content |
WUSNs | wireless underground sensor networks |
BD | bulk density |
References
- Popescu, D.; Stoican, F.; Stamatescu, G.; Ichim, L.; Dragana, C. Advanced UAV–WSN system for intelligent monitoring in precision agriculture. Sensors 2020, 20, 817. [Google Scholar] [CrossRef]
- DeLay, N.D.; Thompson, N.M.; Mintert, J.R. Precision agriculture technology adoption and technical efficiency. J. Agric. Econ. 2022, 73, 195–219. [Google Scholar] [CrossRef]
- Abu, N.; Bukhari, W.; Ong, C.; Kassim, A.; Izzuddin, T.; Sukhaimie, M.; Norasikin, M.; Rasid, A. Internet of things applications in precision agriculture: A review. J. Robot. Control (JRC) 2022, 3, 338–347. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Khanna, A.; Kaur, S. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Comput. Electron. Agric. 2019, 157, 218–231. [Google Scholar] [CrossRef]
- Tang, P.; Liang, Q.; Li, H.; Pang, Y. Application of Internet-of-Things Wireless Communication Technology in Agricultural Irrigation Management: A Review. Sustainability 2024, 16, 3575. [Google Scholar] [CrossRef]
- Dong, Y.; Werling, B.; Cao, Z.; Li, G. Implementation of an in-field IoT system for precision irrigation management. Front. Water 2024, 6, 1353597. [Google Scholar] [CrossRef]
- Hassan, E.S.; Alharbi, A.A.; Oshaba, A.S.; El-Emary, A. Enhancing Smart Irrigation Efficiency: A New WSN-Based Localization Method for Water Conservation. Water 2024, 16, 672. [Google Scholar] [CrossRef]
- Sun, N.; Fan, B.; Ding, Y.; Liu, Y.; Bi, Y.; Seglah, P.A.; Gao, C. Analysis of the Development Status and Prospect of China’s Agricultural Sensor Market under Smart Agriculture. Sensors 2023, 23, 3307. [Google Scholar] [CrossRef]
- Ruchal, H.; Mutreja, S. Soil Moisture Sensor Market: Global Opportunity Analysis and Industry Forecast 2020–2027. Allied Market Research. 2020. Available online: https://www.alliedmarketresearch.com/soil-moisture-sensor-market (accessed on 7 May 2023.).
- Yang, S.; Baltaji, O.; Singer, A.C.; Hashash, Y.M. Development of an underground through-soil wireless acoustic communication system. IEEE Wirel. Commun. 2019, 27, 154–161. [Google Scholar] [CrossRef]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef]
- Holden, B.M. Low Frequency Improvements to Commercial Geophones. Master’s Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2014. [Google Scholar]
- Guico, M.L.; Monje, J.C.; Oppus, C.; Domingo, A.; Ngo, G.; Torres, J.B. Wireless Sensor Network for Soil Monitoring. In Proceedings of the 2019 IEEE Conference on Wireless Sensors (ICWiSe), Pulau Pinang, Malaysia, 19–21 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hardie, M.; Hoyle, D. Underground wireless data transmission using 433-MHz LoRa for agriculture. Sensors 2019, 19, 4232. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Zhang, D.; Liao, H.; Wang, H. Can the seismic wave attenuation characteristics of various soils be identified using distributed acoustic sensing? J. Appl. Geophys. 2024, 221, 105281. [Google Scholar] [CrossRef]
- Mostaghimi, H.; Pagtalunan, J.R.; Moon, B.; Kim, S.; Park, S.S. Dynamic drill-string modeling for acoustic telemetry. Int. J. Mech. Sci. 2022, 218, 107043. [Google Scholar] [CrossRef]
- Parameswaran, V.; Zhou, H.; Zhang, Z. Irrigation control using wireless underground sensor networks. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 653–659. [Google Scholar]
- Akkas¸, M.A.; Sokullu, R. Wireless underground sensor networks: Channel modeling and operation analysis in the terahertz band. Int. J. Antennas Propag. 2015, 2015, 780235. [Google Scholar] [CrossRef]
- Salam, A.; Vuran, M.C. EM-based wireless underground sensor networks. In Underground Sensing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–285. [Google Scholar]
- Ishtiaq, M.; Hwang, S.H. Performance analysis of multihop underground magnetic induction communication. Electronics 2021, 10, 1255. [Google Scholar] [CrossRef]
- Kisseleff, S.; Akyildiz, I.F.; Gerstacker, W.H. Survey on advances in magnetic induction-based wireless underground sensor networks. IEEE Internet Things J. 2018, 5, 4843–4856. [Google Scholar] [CrossRef]
- Berro, M.J.; Reich, M. Laboratory investigations of a hybrid mud pulse telemetry (HMPT)—A new approach for speeding up the transmitting of MWD/LWD data in deep boreholes. J. Pet. Sci. Eng. 2019, 183, 106374. [Google Scholar] [CrossRef]
- Mwachaka, S.M.; Wu, A.; Fu, Q. A review of mud pulse telemetry signal impairments modeling and suppression methods. J. Pet. Explor. Prod. Technol. 2019, 9, 779–792. [Google Scholar] [CrossRef]
- Mahenge, E.; Sinde, R.; Dida, M.A.; Sam, A.E. Radio Frequency Energy Harvesting for Under-Ground Sensor Nodes: Possibilities and Challenges. IEEE Access 2024, 12, 43772–43788. [Google Scholar] [CrossRef]
- Vuran, M.C.; Salam, A.; Wong, R.; Irmak, S. Internet of underground things: Sensing and communications on the field for precision agriculture. In Proceedings of the 2018 IEEE 4thWorld Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 586–591. [Google Scholar]
- Liu, Y.; Habibi, D.; Chai, D.; Wang, X.; Chen, H.; Gao, Y.; Li, S. A comprehensive review of acoustic methods for locating underground pipelines. Appl. Sci. 2020, 10, 1031. [Google Scholar] [CrossRef]
- Oelze, M.L.; O’Brien, W.D.; Darmody, R.G. Measurement of attenuation and speed of sound in soils. Soil Sci. Soc. Am. J. 2002, 66, 788–796. [Google Scholar] [CrossRef]
- Huang, X.; Greenhalgh, S.; Han, L.; Liu, X. Generalized effective Biot theory and seismic wave propagation in anisotropic, poroviscoelastic media. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023590. [Google Scholar] [CrossRef]
- Edelman, I. Bifurcation of the Biot slow wave in a porous medium. J. Acoust. Soc. Am. 2003, 114, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Lafarge, D.; Nemati, N.; Vielpeau, S. Brownian motion with radioactive decay to calculate the dynamic bulk modulus of gases saturating porous media according to Biot theory. Acta Acust. 2023, 7, 44. [Google Scholar] [CrossRef]
- Deresiewicz, H.; Herrman, G. Bodies in contact with applications to granular media. RD Mindlin Appl. Mech. 2013, 105–147. [Google Scholar]
- Shin, H.C.; Whalley, W.; Attenborough, K.; Taherzadeh, S. On the theory of Brutsaert about elastic wave speeds in unsaturated soils. Soil Tillage Res. 2016, 156, 155–165. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Mirzanejad, M. Propagation of inhomogeneous waves in unsaturated visco-poroelastic layered media. J. Pet. Geomech. 2022, 5. [Google Scholar]
- Xu, Y.; Duan, J.; Jiang, R.; Li, J.; Yang, Z. Study on the detection of soil water content based on the pulsed acoustic wave (PAW) method. IEEE Access 2021, 9, 15731–15743. [Google Scholar] [CrossRef]
- Adamo, F.; Andria, G.; Attivissimo, F.; Giaquinto, N. An acoustic method for soil moisture measurement. IEEE Trans. Instrum. Meas. 2004, 53, 891–898. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, L.; Yu, C. Rheological properties of soil: A review. Proc. IOP Conf. Ser. Earth Environ. Sci. 2017, 64, 012011. [Google Scholar] [CrossRef]
- Sevostianov, I. Gassmann equation and replacement relations in micromechanics: A review. Int. J. Eng. Sci. 2020, 154, 103344. [Google Scholar] [CrossRef]
- Tang, X. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot’s poroelastic wave theory. Sci. China Earth Sci. 2011, 54, 1441–1452. [Google Scholar] [CrossRef]
- Massah, S.R.; Hajihassani, M.; Haghighat, A.E. Investigating the interactions of acoustic waves with underground structures via the boundary element method. Appl. Acoust. 2021, 177, 107926. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; Pearson Education: New Delhi, India, 1996. [Google Scholar]
- Rab, M.; Chandra, S.; Fisher, P.; Robinson, N.; Kitching, M.; Aumann, C.; Imhof, M. Modelling and prediction of soil water contents at field capacity and permanent wilting point of dryland cropping soils. Soil Res. 2011, 49, 389–407. [Google Scholar] [CrossRef]
- Rosyidi, S.; Taha, M.; Chik, Z.; Ismail, A. Determination of attenuation and geometric damping on clayey sand residual soil in irregular profile using surface wave method. In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 1–6 October 2008; pp. 1–6. [Google Scholar]
- Mahajan, S.; Budhu, M. Shear viscosity of clays using the fall cone test. Géotechnique 2009, 59, 539–543. [Google Scholar] [CrossRef]
- Zou, J. Assessment of the Reactivity of Expansive Soil in Melbourne Metropolitan Area. Ph.D. Thesis, RMIT University, Melbourne, VIC, Australia, 2015. [Google Scholar]
- Lo, W.C.; Yeh, C.L.; Tsai, C.T. Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions. J. Hydrol. 2007, 338, 273–284. [Google Scholar] [CrossRef]
- Du, K.L.; Swamy, M.N. Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Karmakar, S.; Kushwaha, R. Development and laboratory evaluation of a rheometer for soil visco-plastic parameters. J. Terramech. 2007, 44, 197–204. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, N.; McCartney, J.S. Scaling shear modulus from small to finite strain for unsaturated soils. J. Geotech. Geoenviron. Eng. 2018, 144, 04017110. [Google Scholar] [CrossRef]
- Pal, A.; Guo, H.; Yang, S.; Akkas, M.A.; Zhang, X. Taking wireless underground: A comprehensive summary. ACM Trans. Sens. Netw. 2023, 20, 1–44. [Google Scholar] [CrossRef]
- Nyéki, A.; Milics, G.; Kovács, A.; Neményi, M. Effects of soil compaction on cereal yield: A review. Cereal Res. Commun. 2017, 45, 1–22. [Google Scholar] [CrossRef]
- Bláhová, K.; Ševelová, L.; Pilařová, P. Influence of water content on the shear strength parameters of clayey soil in relation to stability analysis of a hillside in Brno region. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1583–1588. [Google Scholar] [CrossRef]
- Inci, G.; Yesiller, N.; Kagawa, T. Experimental investigation of dynamic response of compacted clayey soils. Geotech. Test. J. 2003, 26, 125–141. [Google Scholar] [CrossRef]
WUSN Technologies | Key Parameters | Comment | ||
---|---|---|---|---|
Coverage | Attenuation | Data Rate | ||
EM | Few meters | High | 10 bps | Mostly used for seismic exploration and down-hole monitoring. Low coverage. Lack of low-frequency antenna. |
RF | 5–20 m | High | Tens of bps | Used in agriculture. High path loss due to increase in frequency and moisture content. |
MI | Tens of meters | Low | In kbps | Used for down-hole telemetry. Low coverage. Maintaining the perfect orientation of the antenna is impractical. |
MPT | Thousands of meters | Medium | 10–20 bps | High data rate. Complex system. Mostly used for down-hole telemetry. |
Acoustic | Inadequate information in the agricultural context; requires further study. | Requires further study | Tens of bps | Good transmission range. No antenna is required, transducers can be placed in the borehole. Inadequate application in an agricultural context. |
Model Name | Channel Characteristics Considered | Comment | |||
---|---|---|---|---|---|
Anisotropic | Attenuation Effect | Viscous | Elastic | ||
Biot’s Theory [29] | No | NM * | No | Yes | Based on the assumption of small strains and is valid for low-frequency acoustic wave propagation. |
Brandt’s Model [32] | Yes | NM * | NM * | NM * | Relative motion between solid and fluid has not been considered. |
Brutsaert’s Theory [34] | No | No | NM * | NM * | The primary focus is on one-dimensional flow profiles and does not adequately address spatial variations. |
Gassmann’s Model [38] | No | No | No | Yes | Porosity remains unchanged with different saturating fluids which is not the case in agricultural soil. |
Elastic wave propagation Model [39] | No | No | No | Yes | The primary application is the measurement of rock rather than agriculture. |
Ray Tracing Method [40] | No | No | NM * | Yes | Suitable for high-frequency seismic waves due to the dependence on the idea of narrow ray bundles. |
Kelvin–Voigt Model [37] | Yes | Yes | Yes | Yes | The wave equation estimates the attenuation of acoustic waves and incorporates the influence of soil parameters of agricultural soil. |
Soil Texture Type | Clay Content (%) | Bulk Density (gm/cm3) | Viscosity, (Pas) | Shear Modulus, (MPa) |
---|---|---|---|---|
Clay | 35–55 | 1.30 | 1019 | 2.4 |
Silty Clay Loam | 25–40 | 1.41 | 1293 | 4.3 |
Clay Loam | 25–35 | 1.40 | 1024 | 5.7 |
Sandy Loam | 10–20 | 1.45 | 996 | 9.3 |
Compaction Level (KPa) | After Compaction (gm/cm3) | Viscosity (Pas) | |
---|---|---|---|
VWC = 10% | VWC = 17% | ||
100 | 0.98 | 55,218 | 53,670 |
150 | 1.32 | 119,080 | 86,620 |
200 | 1.57 | 145,800 | 104,270 |
300 | 1.88 | 235,110 | 195,510 |
400 | 2.30 | 283,100 | 169,110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Moshi, M.A.; Hardie, M.; Choudhury, T.; Kamruzzaman, J. Wireless Underground Sensor Communication Using Acoustic Technology. Sensors 2024, 24, 3113. https://doi.org/10.3390/s24103113
Al Moshi MA, Hardie M, Choudhury T, Kamruzzaman J. Wireless Underground Sensor Communication Using Acoustic Technology. Sensors. 2024; 24(10):3113. https://doi.org/10.3390/s24103113
Chicago/Turabian StyleAl Moshi, Md Adnan, Marcus Hardie, Tanveer Choudhury, and Joarder Kamruzzaman. 2024. "Wireless Underground Sensor Communication Using Acoustic Technology" Sensors 24, no. 10: 3113. https://doi.org/10.3390/s24103113
APA StyleAl Moshi, M. A., Hardie, M., Choudhury, T., & Kamruzzaman, J. (2024). Wireless Underground Sensor Communication Using Acoustic Technology. Sensors, 24(10), 3113. https://doi.org/10.3390/s24103113