1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers
<p>Electrical symbol of the MI-OTA.</p> "> Figure 2
<p>CMOS realization of the MI-OTA using the MIBD-MOST technique.</p> "> Figure 3
<p>The MIBD-MOST technique: (<b>a</b>) symbol, (<b>b</b>) realization, and (<b>c</b>) R<sub>MOS</sub> realization.</p> "> Figure 4
<p>Proposed tunable high-<span class="html-italic">Q</span> voltage-mode universal filter using (<b>a</b>) conventional OTAs and (<b>b</b>) MI-OTAs.</p> "> Figure 5
<p>Nonideal structure of the OTA.</p> "> Figure 6
<p>The parasitic impedances of the MI-OTA.</p> "> Figure 7
<p>The I<sub>o</sub> versus V<sub>in</sub> (<b>a</b>) and the transconductance AC characteristic (<b>b</b>) with different setting currents.</p> "> Figure 8
<p>The transconductance AC characteristic of the MI-OTA: (<b>a</b>) MC, (<b>b</b>) process, (<b>c</b>) voltage and (<b>d</b>) temperature corners.</p> "> Figure 9
<p>The frequency and phase characteristics of the filter.</p> "> Figure 9 Cont.
<p>The frequency and phase characteristics of the filter.</p> "> Figure 10
<p>The frequency characteristics of the LP filter with (<b>a</b>) MC analysis and (<b>b</b>) PVT corners.</p> "> Figure 11
<p>The frequency characteristic of the BPF with different values for (<b>a</b>) the capacitor C<sub>3</sub> and (<b>b</b>) the setting current I<sub>set3</sub>.</p> "> Figure 12
<p>The frequency characteristic of the BPF with different I<sub>set1–4</sub>.</p> "> Figure 13
<p>(<b>a</b>) The transient characteristic of the BPF and (<b>b</b>) the spectrum of the output signal.</p> "> Figure 14
<p>The output noise of the BPF.</p> ">
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
- (v)
2. Circuit Description
2.1. Multiple-Input OTA
2.2. Proposed Tunable High-Q Voltage-Mode Universal Filter
2.3. Effects of the Nonidealities of the MI-OTA
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MI-OTA | multiple-input operational transconductance amplifier |
CCII | second-generation current conveyor |
CFOA | current feedback operational amplifier |
VDIBA | voltage differencing inverting buffered amplifier |
SIMO | single-input multiple-output |
MISO | multiple-input single-output |
MIMO | multiple-input multiple-output |
MOS | metal oxide semiconductor |
MOST | metal oxide semiconductor transistor |
CMOS | complementary metal oxide semiconductor |
GD | gate-driven |
MIBD | multiple-input bulk-driven |
TSMC | Taiwan Semiconductor Manufacturing Company |
VM | voltage-mode |
CM | current-mode |
MM | mixed-mode |
LPF | low-pass filter |
HPF | high-pass filter |
BPF | band-pass filter |
BSF | band-stop filter |
APF | all-pass filter |
References
- Geiger, R.L.; Sánchez-Sinencio, E. Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial. IEEE Circuits Devices Mag. 1985, 1, 20–32. [Google Scholar] [CrossRef]
- Mohan, P.V.A. Generation of OTA-C Filter Structures from Active RC Filter Structures. IEEE Trans. Circuits Syst. 1990, 37, 656–660. [Google Scholar] [CrossRef]
- Laoudias, C.; Psychalinos, C. Integrated Filters for Short Range Wireless and Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 8–9. [Google Scholar]
- Lee, C.-N. Fully Cascadable Mixed-Mode Universal Filter Biquad Using DDCCs and Grounded Passive Components. J. Circuits Syst. Comput. 2011, 20, 607–620. [Google Scholar] [CrossRef]
- Minaei, S.; Ibrahim, M.A. A Mixed-Mode KHN-Biquad Using DVCC and Grounded Passive Elements Suitable for Direct Cascading. Int. J. Circuit Theory Appl. 2008, 37, 793–810. [Google Scholar] [CrossRef]
- Alpaslan, H.; Yuce, E. DVCC+ Based Multifunction and Universal Filters with the High Input Impedance Features. Analog Integr. Circuits Signal Process. 2020, 103, 325–3351. [Google Scholar] [CrossRef]
- Yuce, E. Fully Integrable Mixed-Mode Universal Biquad with Specific Application of the CFOA. AEU-Int. J. Electron. Commun. 2010, 64, 304–309. [Google Scholar] [CrossRef]
- Bhaskar, D.R.; Raj, A.; Senani, R. Three New CFOA-Based SIMO-Type Universal Active Filter Configurations with Unrivalled Features. AEU-Int. J. Electron. Commun. 2022, 153, 154285. [Google Scholar] [CrossRef]
- Chen, H.-P.; Wey, I.-C.; Chen, L.-Y.; Wu, C.-Y.; Wang, S.-F. Design and Verification of a New Universal Active Filter Based on the Current Feedback Operational Amplifier and Commercial AD844 Integrated Circuit. Sensors 2023, 23, 8258. [Google Scholar] [CrossRef] [PubMed]
- Pushkar, K.L.; Bhaskar, D.R.; Prasad, D. Voltage-Mode New Universal Biquad Filter Configuration Using a Single VDIBA. Circuits Syst. Signal Process. 2014, 33, 275–285. [Google Scholar] [CrossRef]
- Herencsar, N.; Cicekoglu, O.; Sotner, R.; Koton, J.; Vrba, K. New Resistorless Tunable Voltage-Mode Universal Filter Using Single VDIBA. Analog Integr. Circuits Signal Process. 2013, 76, 251–260. [Google Scholar] [CrossRef]
- Masud, M.I.; A’ain, A.K.B.; Khan, I.A.; Shaikh-Husin, N. CNTFET based Voltage Mode MISO Active Only Biquadratic Filter for Multi-GHz Frequency Applications. Circuits Syst. Signal Process. 2021, 40, 4721–4740. [Google Scholar] [CrossRef]
- Sun, Y.; Fidler, J.K. Design of Current-Mode Multiple Output OTA and Capacitor Filters. Int. J. Electron. 1996, 81, 95–99. [Google Scholar] [CrossRef]
- Abuelma’atti, M.T.; Bentrcia, A. New Universal Current-Mode Multiple-Input Multiple-Output OTA-C Filter. In Proceedings of the 2004 IEEE Asia-Pacific Conference on Circuits and Systems, Tainan, Taiwan, 6–9 December 2004; pp. 1037–1040. [Google Scholar] [CrossRef]
- Bhanja, M.; Maity, I.; Roy, M.S.; Ray, B. A Novel Current-Mode Biquadratic OTA-C Filter. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dhaka, Bangladesh, 19–20 December 2015; pp. 378–381. [Google Scholar] [CrossRef]
- Prommee, P.; Pattanatadapong, T. Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter. Circuits Syst. Signal Process. 2010, 29, 913–924. [Google Scholar] [CrossRef]
- Horng, J.-W. Voltage-Mode Universal Biquadratic Filter with One Input and Five Outputs Using OTAs. Int. J. Electron. 2002, 89, 729–737. [Google Scholar] [CrossRef]
- Lee, W.-T.; Liao, Y.-Z. New Voltage-Mode High-Pass, Band-Pass, and Low-Pass Filter Using DDCC and OTAs. Int. J. Electron. Commun. 2008, 62, 701–704. [Google Scholar] [CrossRef]
- Singh, A.K.; Senani, R.; Bhaskar, D.R.; Sharma, R.K. A New Electronically-Tunable Active-Only Universal Biquad. J. Circuits Syst. Comput. 2011, 20, 549–555. [Google Scholar] [CrossRef]
- Pwint Wai, M.P.; Jaikla, W.; Suwanjan, P.; Sunthonkanokpong, W. Single Input Multiple Output Voltage Mode Universal Filters with Electronic Controllability Using Commercially Available ICs. In Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 24–27 June 2020; pp. 607–610. [Google Scholar] [CrossRef]
- Lee, C.-N. High-Order Multiple-Mode and Transadmittance-Mode OTA-C Universal Filters. J. Circuits Syst. Comput. 2012, 21, 1250048. [Google Scholar] [CrossRef]
- Rani, N.; Kumar Ranjan, R.; Pal, R.; Paul, S.K. Programmable and Electronically Tunable Voltage-Mode Universal Biquadratic Filter Based on Simple CMOS OTA. In Proceedings of the 2016 3rd International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 3–5 March 2016; pp. 58–62. [Google Scholar] [CrossRef]
- Horng, J.-W. High Input Impedance Voltage-Mode Universal Biquadratic Filter Using Two OTAs and One CCII. Int. J. Electron. 2003, 90, 183–191. [Google Scholar] [CrossRef]
- Raj, A.; Bhaskar, D.R.; Kumar, P. Multiple-Input Single-Output Universal Biquad Filter Using Single Output OTAs. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 22–24 October 2018; pp. 1237–1240. [Google Scholar] [CrossRef]
- Klungtong, S.; Thanapatay, D. Voltage-Mode Universal Biquadratic Filter Using OTA and Uniform Distributed RC. In Proceedings of the 2013 13th International Symposium on Communications and Information Technologies (ISCIT), Surat Thani, Thailand; 2013; pp. 253–256. [Google Scholar] [CrossRef]
- Kumar, K.; Pal, K. Voltage Mode Multifunction OTA-C Biquad Filter. Microelectron. Int. 2006, 23, 24–27. [Google Scholar] [CrossRef]
- Psychalinos, C.; Kasimis, C.; Khateb, F. Multiple-Input Single-Output Universal Biquad Filter Using Single Output Operational Transconductance Amplifiers. AEU-Int. J. Electron. Commun. 2018, 93, 360–367. [Google Scholar] [CrossRef]
- Garradhi, K.; Hassen, N.; Ettaghzouti, T.; Besbes, K. Highly Linear Low Voltage Low Power OTA Using Source-Degeneration Technique and Universal Filter Application. In Proceedings of the 2015 27th International Conference on Microelectronics (ICM), Casablanca, Morocco, 20–23 December 2015; pp. 295–298. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Yang, C.-M. A Voltage-Mode Universal Filter Using Five Single-Ended OTAs with Two Grounded Capacitors and a Quadrature Oscillator Using the Voltage-Mode Universal Filter. Opt.-Int. J. Light Electron 2019, 192, 162950. [Google Scholar] [CrossRef]
- Tsukutani, T.; Sumi, Y.; Kinugasa, Y.; Higashimura, M.; Fukui, Y. Versatile Voltage-Mode Active-Only Biquad Circuits with Loss-Less and Lossy Integrators. Int. J. Electron. 2004, 91, 525–536. [Google Scholar] [CrossRef]
- Li, S.; Jiang, J.; Wang, J.; Gong, X.; Li, Q. Multiply Universal Filter Based CCCII and OTA Using Minimum Elements. In Proceedings of the 2010 International Conference on Electronic Devices, Systems and Applications, Kuala Lumpur, Malaysia, 1–14 April 2010; pp. 309–312. [Google Scholar] [CrossRef]
- Horng, J.-W. Voltage-Mode Universal Biquadratic Filter Using Two OTAs. Act. Passiv. Electron. Compon. 2004, 27, 835679. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Yang, C.-M. Independently Tunable Voltage-Mode OTA-C Biquadratic Filter with Five Inputs and Three Outputs and Its Fully-Uncoupled Quadrature Sinusoidal Oscillator Application. AEU-Int. J. Electron. Commun. 2019, 110, 152822. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Lin, Y.-C. Versatile Tunable Voltage–Mode Biquadratic Filter and Its Application in Quadrature Oscillator. Sensors 2019, 19, 2349. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Lee, C.-L. Versatile Voltage-Mode Biquadratic Filter and Quadrature Oscillator Using Four OTAs and two grounded capacitors. Electronics 2020, 9, 1493. [Google Scholar] [CrossRef]
- Abuelma’atti, M.T.; Bentrcia, A. A Novel Mixed-Mode OTA-C Universal Filter. Int. J. Electron. 2005, 92, 375–383. [Google Scholar] [CrossRef]
- Chen, H.P.; Liao, Y.Z.; Lee, W.T. Tunable Mixed-Mode OTA-C Universal Filter. Analog Integr. Circuits Signal Process. 2009, 58, 135–141. [Google Scholar] [CrossRef]
- Lee, C.N. Multiple-Mode OTA-C Universal Biquad Filters. Circuits Syst. Signal Process. 2010, 29, 263–274. [Google Scholar] [CrossRef]
- Parvizi, M.; Taghizadeh, A.; Mahmoodian, H.; Kozehkanani, Z.D. A Low-Power Mixed-Mode SIMO Universal Gm-C Filter. J. Circuits Syst. Comput. 2017, 26, 1750164. [Google Scholar] [CrossRef]
- Parvizi, M. Design of a New Low Power MISO Multi-Mode Universal Biquad OTA-C Filter. Int. J. Electron. 2019, 106, 440–454. [Google Scholar] [CrossRef]
- Bhaskar, D.R.; Raj, A.; Kumar, P. Mixed-Mode Universal Biquad Filter Using OTAs. J. Circuits Syst. Comput. 2020, 29, 2050162. [Google Scholar] [CrossRef]
- Namdari, A.; Dolatshahi, M. A New Ultra Low-Power, Universal OTA-C Filter in Subthreshold Region Using Bulk-Drive Technique. AEU-Int. J. Electron. Commun. 2017, 82, 458–466. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T.; Psychalinos, C. Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access 2021, 9, 56253–56263. [Google Scholar] [CrossRef]
- Jaikla, W.; Khateb, F.; Kumngern, M.; Kulej, T.; Ranjan, R.K.; Suwanjan, P. 0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access 2020, 8, 187832–187839. [Google Scholar] [CrossRef]
- Namdari, A.; Dolatshahi, M. Design of a Low-Voltage and Low-Power, Reconfigurable Universal OTA-C Filter. Analog Integr. Circuits Signal Process. 2022, 111, 169–188. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T.; Akbari, M.; Stopjakova, V. 0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. Sensors 2022, 22, 8619. [Google Scholar] [CrossRef]
- Namdari, A.; Dolatshahi, M.; Aghababaei Horestani, M. A New Ultra-Low-Power High-Order Universal OTA-C Filter Based on CMOS Double Inverters in the Subthreshold Region. Circuits Syst. Signal Process. Vol. 2023, 42, 6379–6398. [Google Scholar] [CrossRef]
- Tlelo-Coyotecatl, E.; Díaz-Sánchez, A.; Rocha-Pérez, J.M.; Vázquez-González, J.L.; Sánchez-Gaspariano, L.A.; Tlelo-Cuautle, E. Enhancing Q-Factor in a Biquadratic Bandpass Filter Implemented with Opamps. Technologies 2019, 7, 64. [Google Scholar] [CrossRef]
- Jendernalik, W.; Jakusz, J.; Blakiewicz, G. Low-Voltage Low-Power Filters with Independent ωo and Q Tuning for Electronic Cochlea Applications. Electronics 2022, 11, 534. [Google Scholar] [CrossRef]
- Krummenacher, F.; Joehl, N. A 4-MHz CMOS Continuous-Time Filter with On-Chip Automatic Tuning. IEEE J. Solid-State Circuits. 1988, 23, 750–758. [Google Scholar] [CrossRef]
- Khateb, F.; Kulej, T.; Akbari, M.; Tang, K.-T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 1739–1747. [Google Scholar] [CrossRef]
- Khateb, F.; Kulej, T.; Kumngern, M.; Psychalinos, C. Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits Syst. Signal Process. 2019, 38, 2829–2845. [Google Scholar] [CrossRef]
- Sun, Y.; Fidler, J.K. Synthesis and Performance Analysis of Universal Minimum Component Integrator-Based IFLF OTA-Grounded Capacitor Filter. IEE Proc.-Circuits Devices Syst. 1996, 143, 107–114. [Google Scholar] [CrossRef]
- Nevárez-Lozano, H.; Sánchez-Sinencio, E. Minimum Parasitic Effects Biquadratic OTA-C Filter Architectures. Analog Integr. Circuits Signal Process. 1991, 1, 297–319. [Google Scholar] [CrossRef]
Filtering Function | Input | |
---|---|---|
LPF | Non-inverting | |
Inverting | ||
BPF | Non-inverting | |
Inverting | ||
Non-inverting | ||
Inverting | ||
HPF | Non-inverting | |
Inverting | ||
BSF | Non-inverting | |
Inverting | ||
APF | Non-inverting | |
Inverting |
Transistor | W/L (μm/μm) |
---|---|
M1–M4, M13–M18 | 10/0.5 |
M1SD, M2SD | 5/0.5 |
M5–M12 | 20/0.5 |
MR | 4/5 |
CB = 0.5 pF | |
VB1 = −300 mV, VB2 = 200 mV |
Factor | Proposed | [16] 2010 | [34] 2019 | [41] 2020 | [45] 2022 | [46] 2022 |
---|---|---|---|---|---|---|
Number of active devices | 4-OTA | 3-OTA | 5-OTA | 5-OTA | 8-OTA | 3-OTA |
Realization | 0.18 μm CMOS | BJT (AT&T CBIC-R) | Commercial IC (LT1228) | 0.18 μm CMOS | 0.18 μm CMOS | 0.18 μm CMOS |
Number passive devices | 3-C | 3-C | 2-C | 2-C | 2-C | 2-C |
Type of filter | MISO | MISO | MIMO | MISO | MIMO | MIMO |
Total number of offered responses | 12 (VM) | 5 (CM) | 7 (VM) | 20 (MM) | 20 (MM) | 22 (VM) |
Electronic control of | Yes | Yes | Yes | Yes | Yes | Yes |
Independent control of Q | Yes | Yes | Yes | No | No | No |
High-Q filter | Yes | Yes | Yes | No | No | No |
All-grounded passive devices | Yes | Yes | Yes | Yes | Yes | Yes |
High input impedances | Yes | - | Yes | Yes | Yes | Yes |
Unnecessary input-matching conditions | Yes | No | Yes | Yes | Yes | Yes |
Unnecessary inverted input signal | Yes | No | Yes | Yes | Yes | Yes |
Achievable range of Q-factor | 0.26 to 9.7 a 0.62 to 9.7 b | 1 to 64 c 1 to 64 d | 1.02 to 3.03 e | - | - | - |
Power supply (V) | 1 | ±2 | ±15 | ±0.9 | ±0.3 | 0.5 |
Power dissipation (nW) | 120 × 103 | - | 861 × 106 | 177.3 × 103 | 5770 | 37 |
Natural frequency (kHz) | 7.85 | 1000 | 159.16 | 3.39 × 103 | 5 | 0.153 |
Total harmonic distortion (%) | 1@140mVpp | - | - | - | <2@200mVpp | 0.33@100mVpp |
IMD3 | −43.6 dB | - | −43.6 dBc | - | - | - |
Output integrated noise (μVrms) | 485.7 | - | - | - | 115 | 220 |
Dynamic range (dB) | 40 | - | - | - | 53.2 | 50 |
Verification of result | Sim | Sim | Sim/Exp | Sim | Sim | Sim |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumngern, M.; Khateb, F.; Kulej, T.; Knobnob, B. 1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers. Sensors 2024, 24, 3013. https://doi.org/10.3390/s24103013
Kumngern M, Khateb F, Kulej T, Knobnob B. 1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers. Sensors. 2024; 24(10):3013. https://doi.org/10.3390/s24103013
Chicago/Turabian StyleKumngern, Montree, Fabian Khateb, Tomasz Kulej, and Boonying Knobnob. 2024. "1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers" Sensors 24, no. 10: 3013. https://doi.org/10.3390/s24103013
APA StyleKumngern, M., Khateb, F., Kulej, T., & Knobnob, B. (2024). 1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers. Sensors, 24(10), 3013. https://doi.org/10.3390/s24103013