Decoupling and Cloaking of Rectangular and Circular Patch Antennas and Interleaved Antenna Arrays with Planar Coated Metasurfaces at C-Band Frequencies—Design and Simulation Study
<p>Schematic design configurations: (<b>a</b>) Isolated Patch I and (<b>b</b>) Isolated Patch II.</p> "> Figure 2
<p>Schematics for (<b>a</b>) Uncloaked Patch I and II, (<b>b</b>) unfolded view of the cloak design for the patches, (<b>c</b>) Cloaked Patch I and II, and (<b>d</b>) side view of the cloaked rectangular patches, detailing the structural parameters of the coated metasurfaces.</p> "> Figure 3
<p>Parametric analysis using the reflection coefficients (<math display="inline"><semantics> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math>) for (<b>a</b>) relative permittivity <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>c</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> of the supporting dielectric material, (<b>b</b>) thickness of the dielectric <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>h</mi> </mrow> <mrow> <mi>c</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>) vertical slot placement <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, and (<b>d</b>) horizontal slot placement <math display="inline"><semantics> <mrow> <msub> <mrow> <mn>2</mn> <mi>D</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> for the cloak design of Patch I.</p> "> Figure 4
<p>Cross-sectional view of the surface currents: (<b>a</b>) uncloaked and (<b>b</b>) cloaked Patch I at the cloaking frequency.</p> "> Figure 5
<p>Plots for (<b>a</b>) total efficiencies, (<b>b</b>) radiation efficiencies, and electric field contours at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz for (<b>c</b>) uncloaked and (<b>d</b>) cloaked Patch I.</p> "> Figure 6
<p>S-parameter plots for (<b>a</b>) coupled uncloaked and (<b>b</b>) decoupled cloaked rectangular patch antennas.</p> "> Figure 7
<p>Total efficiencies when (<b>a</b>) Patch I is active and (<b>b</b>) Patch II is active.</p> "> Figure 8
<p>Electric field contours for the two rectangular patches placed close together: (<b>a</b>) coupled uncloaked (without cloaks) and (<b>b</b>) decoupled cloaked (with cloaks) cases, when Patch I (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz) is active, and similarly for (<b>c</b>) uncloaked and (<b>d</b>) cloaked cases, when Patch II (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz) is active.</p> "> Figure 9
<p>Realized gain patterns at (<b>a</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>φ</mi> <mo>=</mo> <msup> <mrow> <mn>0</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mrow> <mn>90</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math> for Patch I (at frequency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz), and at (<b>c</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>φ</mi> <mo>=</mo> <msup> <mrow> <mn>0</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mrow> <mn>90</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math> for Patch II (at frequency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz).</p> "> Figure 10
<p>E-field plots showing co-polar and cross-polar radiations for the cloaked configurations of (<b>a</b>) Patch I at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz and (<b>b</b>) Patch II at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz.</p> "> Figure 11
<p>(<b>a</b>) Cross-sectional view of Patch I coated with the metasurface cloak, (<b>b</b>) total RCS plot for Patch I and E-field plots for (<b>c</b>) uncloaked Patch I at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz, (<b>d</b>) cloaked Patch I at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz, and (<b>e</b>) cloaked Patch I at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz in presence of a normally incident TM polarized plane wave.</p> "> Figure 12
<p>Schematic configurations of (<b>a</b>) uncloaked and (<b>b</b>) cloaked rectangular patch antenna arrays.</p> "> Figure 13
<p>(<b>a</b>) Active reflection coefficients, (<b>b</b>) active coupling coefficients for uncloaked (coupled) Array I, (<b>c</b>) active reflection coefficients, and (<b>d</b>) active coupling coefficients for cloaked (decoupled) Array I (resonance frequency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz).</p> "> Figure 14
<p>(<b>a</b>) Active reflection coefficients, (<b>b</b>) active coupling coefficients for uncloaked (coupled) Array II, (<b>c</b>) active reflection coefficients, and (<b>d</b>) active coupling coefficients for cloaked (decoupled) Array II (resonance frequency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz).</p> "> Figure 15
<p>Plots for total efficiencies: (<b>a</b>) Array I (resonance frequency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz) active and (<b>b</b>) Array II (resonance frequency <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz) active.</p> "> Figure 16
<p>Electric field contours for (<b>a</b>) uncloaked and (<b>b</b>) cloaked patch antenna arrays when Array I (operating frequency, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz) is active; (<b>c</b>) uncloaked and (<b>d</b>) cloaked patch antenna arrays when Array II (operating frequency, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz) is active.</p> "> Figure 17
<p>Active VSWR plots for (<b>a</b>) uncloaked coupled and (<b>b</b>) cloaked decoupled Array I (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz), and isolation parameter plots for (<b>c</b>) uncloaked coupled and (<b>d</b>) cloaked decoupled Array I, at scan angle = <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>20</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 18
<p>Active VSWR plots for (<b>a</b>) uncloaked coupled and (<b>b</b>) cloaked decoupled Array I (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz), and isolation parameter plots for (<b>c</b>) uncloaked coupled and (<b>d</b>) cloaked decoupled Array I, at scan angle = <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>30</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 19
<p>Realized gain plots for Array I (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> GHz) showing beam scanning at scan angles (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>0</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>10</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>45</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>20</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 20
<p>Realized gain plots for Array II (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.2</mn> </mrow> </semantics></math> GHz) showing beam scanning at angles (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>0</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>10</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>45</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>30</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 21
<p>Schematics for (<b>a</b>) uncloaked circular Patch I and II, (<b>b</b>) cross-sectional side view of the uncloaked coupled patches, (<b>c</b>) cloaked Patch I and II, (<b>d</b>) side view of the cloaked circular patches, detailing the structural parameters of the coated metasurfaces, and (<b>e</b>) unfolded view of the cloak design.</p> "> Figure 22
<p>Plots for S-parameters: (<b>a</b>) uncloaked coupled and (<b>b</b>) cloaked decoupled patch antennas and plots for total efficiencies: (<b>c</b>) Patch I is active and (<b>d</b>) Patch II is active.</p> "> Figure 23
<p>Electric field contours for (<b>a</b>) uncloaked coupled and (<b>b</b>) cloaked decoupled cases when Patch I is active (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math> GHz), and (<b>c</b>) uncloaked coupled and (<b>d</b>) cloaked decoupled cases when Patch II is active (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4.7</mn> </mrow> </semantics></math> GHz).</p> "> Figure 24
<p>Realized gain patterns at (<b>a</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>φ</mi> <mo>=</mo> <msup> <mrow> <mn>0</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mrow> <mn>90</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math> for Patch I (at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math> GHz), and at (<b>c</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>φ</mi> <mo>=</mo> <msup> <mrow> <mn>0</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mrow> <mn>90</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math> for Patch II (at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4.7</mn> </mrow> </semantics></math> GHz).</p> "> Figure 25
<p>(<b>a</b>) Cross-sectional side view, (<b>b</b>) total RCS plot for cloaked Patch I, and E-field distributions for cloaked Patch I at (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math> GHz, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4.7</mn> </mrow> </semantics></math> GHz in presence of a normally incident TM polarized plane wave.</p> "> Figure 26
<p>Schematic configurations of (<b>a</b>) uncloaked and (<b>b</b>) cloaked interleaved circular patch antenna arrays.</p> "> Figure 27
<p>Plots for total efficiencies: (<b>a</b>) Array I (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math> GHz) active and (<b>b</b>) Array II (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4.7</mn> </mrow> </semantics></math> GHz) active.</p> "> Figure 28
<p>(<b>a</b>) Active reflection coefficients, (<b>b</b>) active coupling coefficients for uncloaked (coupled) Array I, (<b>c</b>) active reflection coefficients, and (<b>d</b>) active coupling coefficients for cloaked (decoupled) Array I (resonance frequency–<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math> GHz).</p> "> Figure 29
<p>(<b>a</b>) Active reflection coefficients, (<b>b</b>) active coupling coefficients for uncloaked (coupled) Array II, (<b>c</b>) active reflection coefficients, and (<b>d</b>) active coupling coefficients for cloaked (decoupled) Array II (resonance frequency–<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4.7</mn> </mrow> </semantics></math> GHz).</p> "> Figure 30
<p>E-field contours: (<b>a</b>) uncloaked and (<b>b</b>) cloaked patch antenna arrays when Array I is active and (<b>c</b>) uncloaked and (<b>d</b>) cloaked patch antenna arrays when Array II is active.</p> "> Figure 31
<p>Realized gain polar plots for Array I (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math> GHz) at scan angles (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>10</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>20</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>30</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 32
<p>Realized gain polar plots for Array II (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>4.7</mn> </mrow> </semantics></math> GHz) at scan angles (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>10</mn> <mo>°</mo> </msup> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>−</mo> <mn>20</mn> </mrow> <mrow> <mo>°</mo> </mrow> </msup> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Design of Planar Coated Metasurfaces for Rectangular Patch Antennas
3. Simulation Results Showcasing Decoupling and Cloaking of Two Rectangular Patch Antennas
4. Cloaking of the Interleaved Rectangular Patch Arrays
Beam Scanning
5. Circular Patch Antennas
5.1. Decoupling and Cloaking of Two Circularly Shaped Patch Antennas
5.2. Cloaking of the Interleaved Circular Patch Antenna Arrays
5.3. Beam Scanning
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alù, A.; Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 2005, 72, 016623. [Google Scholar] [CrossRef] [PubMed]
- Alù, A.; Engheta, N. Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights. Opt. Express 2007, 15, 3318. [Google Scholar] [CrossRef] [PubMed]
- Alù, A.; Engheta, N. Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Opt. Express 2007, 15, 7578. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.; Alù, A.; Silveirinha, M.; Engheta, N. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 2009, 103, 153901. [Google Scholar] [CrossRef] [PubMed]
- Guild, M.; Haberman, M.; Alù, A. Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves. Wave Mot. 2011, 48, 468–482. [Google Scholar] [CrossRef]
- Rainwater, D.; Kerkhoff, A.; Melin, K.; Soric, J.; Moreno, G.; Alù, A. Experimental verification of three-dimensional plasmonic cloaking in free-space. New J. Phys. 2012, 143, 013054. [Google Scholar] [CrossRef]
- Pendry, J.; Schurig, D.; Smith, D. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef]
- Li, J.; Pendry, J. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 2008, 101, 203901. [Google Scholar] [CrossRef]
- Chen, H.; Chan, C.; Sheng, P. Transformation optics and metamaterials. Nat. Mater. 2010, 9, 387–396. [Google Scholar] [CrossRef]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef]
- Monticone, F.; Alù, A. Invisibility exposed: Physical bounds on passive cloaking. Optica 2016, 3, 718–724. [Google Scholar] [CrossRef]
- Alitalo, P.; Luukkonen, O.; Jylha, L.; Venermo, J.; Tretyakov, S. Transmission-line networks cloaking objects from electromagnetic fields. IEEE Trans. Antennas Propag. 2008, 56, 416–424. [Google Scholar] [CrossRef]
- Tretyakov, S.; Alitalo, P.; Luukkonen, O.; Simovski, C. Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett. 2009, 103, 103905. [Google Scholar] [CrossRef] [PubMed]
- Alitalo, P.; Vehmas, J.; Tretyakov, S. Reduction of antenna blockage with a transmission-line cloak. In Proceedings of the European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2399–2402. [Google Scholar]
- Alù, A. Mantle cloak: Invisibility induced by a surface. Phys. Rev. B 2009, 80, 245115. [Google Scholar] [CrossRef]
- Chen, P.; Alù, A. Mantle cloaking using thin patterned metasurfaces. Phys. Rev. B 2011, 84, 205110. [Google Scholar] [CrossRef]
- Matekovits, L.; Bird, T. Width-modulated microstrip-line based mantle cloaks for thin single and multiple cylinders. IEEE Trans. Antennas Propag. 2014, 62, 2606–2615. [Google Scholar] [CrossRef]
- Hamzavi-Zarghani, Z.; Yahaghi, A.; Matekovits, L. Analytical design of a metasurface based mantle cloak for dielectric cylinder under oblique incidence. In Proceedings of the International Symposium on Telecommunications, Tehran, Iran, 17–19 December 2018; pp. 65–68. [Google Scholar]
- Vellucci, S.; Monti, A.; Barbuto, M.; Toscano, A.; Bilotti, F. Progress and perspective on advanced cloaking metasurfaces: From invisibility to intelligent antennas. EPJ Appl. Metamater. 2021, 7, 8. [Google Scholar] [CrossRef]
- Chen, P.; Alù, A. Atomically-thin surface cloak using graphene monolayers. ACS Nano 2011, 5, 5855–5863. [Google Scholar] [CrossRef]
- Pawar, S.; Bernety, H.M.; Yakovlev, A.B. Graphene-Metal Metasurface for Cloaking of Cylindrical Objects at Low-Terahertz Frequencies. IEEE Access 2022, 10, 130200–130211. [Google Scholar] [CrossRef]
- Monti, A.; Soric, J.; Alù, A.; Bilotti, F.; Toscano, A.; Vegni, L. Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1414–1417. [Google Scholar] [CrossRef]
- Soric, J.; Monti, A.; Toscano, A.; Bilotti, F.; Alù, A. Dual-polarized reduction of dipole antenna blockage using mantle cloaks. IEEE Trans. Antennas Propag. 2015, 63, 4827–4834. [Google Scholar] [CrossRef]
- Bernety, H.M.; Yakovlev, A. Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks. IEEE Trans. Antennas Propag. 2015, 63, 1554–1563. [Google Scholar] [CrossRef]
- Bernety, H.M.; Yakovlev, A. Decoupling antennas in printed technology using elliptical metasurface cloaks. J. Appl. Phys. 2016, 119, 014904. [Google Scholar] [CrossRef]
- Monti, A.; Soric, J.; Alù, A.; Toscano, A.; Bilotti, F. Design of cloaked Yagi-Uda antennas. EPJ Appl. Metamater. 2016, 3, 10. [Google Scholar] [CrossRef]
- Pawar, S.; Skinner, H.G.; Suh, S.-Y.; Yakovlev, A.B. Cloaking of Slot Antennas at C-Band Frequencies Using Elliptical Metasurface Cloaks. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2171–2175. [Google Scholar] [CrossRef]
- Jiang, Z.; Werner, D. Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators. Opt. Express 2016, 24, 9629–9644. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Soric, J.; Barbuto, M.; Ramaccia, D.; Vellucci, S.; Trotta, F.; Alù, A.; Toscano, A.; Bilotti, F. Mantle cloaking for co-site radio-frequency antennas. Appl. Phys. Lett. 2016, 108, 113502. [Google Scholar] [CrossRef]
- Soric, J.; Ra’di, Y.; Farfan, D.; Alù, A. Radio-transparent dipole antenna based on a metasurface cloak. Nature 2022, 13, 1114. [Google Scholar] [CrossRef]
- Ghosh, J.; Mitra, D. Mutual coupling reduction in planar antenna by graphene metasurface for THz application. J. Electromagn. Waves Appl. 2017, 31, 2036–2045. [Google Scholar] [CrossRef]
- Moreno, G.; Yakovlev, A.B.; Bernety, H.M.; Werner, D.H.; Xin, H.; Monti, A.; Bilotti, F.; Alù, A. Wideband Elliptical Metasurface Cloaks in Printed Antenna Technology. IEEE Trans. Antennas Propag. 2018, 66, 3512–3525. [Google Scholar] [CrossRef]
- Shokati, E.; Granpayeh, N. Wideband cloaking by using inhomogeneous nanostructured graphene metasurface for tunable cloaking in the terahertz regime. In Proceedings of the International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran, Iran, 20–22 December 2016; pp. 9–13. [Google Scholar]
- Yang, F.; Rahmat-Samii, Y. Microstrip Antennas Integrated with Electromagnetic Band-Gap (EBG) Structures: A Low Mutual Coupling Design for Array Applications. IEEE Trans. Antennas Propag. 2003, 51, 2936–2946. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Quevedo-Teruel, O.; Inclan-Sanchez, L. Mutual Coupling Reduction in Patch Antenna Arrays by Using a Planar EBG Structure and a Multilayer Dielectric Substrate. IEEE Trans. Antennas Propag. 2008, 56, 1648–1655. [Google Scholar] [CrossRef]
- Vishvaksenan, K.; Mithra, K.; Kalaiarasan, R.; Raj, K.S. Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Parallel Coupled-Line Resonators. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2146–2149. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Jiang, L.; Yeung, L. Decoupling of Antennas with Adjacent Frequency Bands Using Cascaded Decoupling Network. IEEE Trans. Antennas Propag. 2021, 69, 1173–1178. [Google Scholar] [CrossRef]
- He, D.; Yu, Q.; Chen, Y.; Yang, S. Dual-Band Shared-Aperture Base Station Antenna Array with Electromagnetic Transparent Antenna Elements. IEEE Trans. Antennas Propag. 2021, 69, 5596–5606. [Google Scholar] [CrossRef]
- Niu, W.; Sun, B.; Zhou, G.; Lan, Z. Dual-Band Aperture Shared Antenna Array with Decreased Radiation Pattern Distortion. IEEE Trans. Antennas Propag. 2022, 70, 6048–6053. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Chu, Q.-X. Electromagnetic Transparent Antenna with Slot-Loaded Patch Dipoles in Dual-Band Array. IEEE Trans. Antennas Propag. 2022, 70, 7989–7998. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Ding, C.; Jiang, W.; Guo, Y. Simultaneous Suppression of Cross-Band Scattering and Coupling between Closely Spaced Dual-Band Dual-Polarized Antennas. IEEE Trans. Antennas Propag. 2023, 71, 6423–6434. [Google Scholar] [CrossRef]
- Singhwal, S.; Kanaujia, B.; Singh, A.; Kishor, J.; Matekovits, L. Dual-band circularly polarized MIMO DRA for sub-6 GHz applications. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22350. [Google Scholar] [CrossRef]
- Marrocco, V.; Basile, V.; Marasco, I.; Niro, G.; Melchiorre, L.; D’Orazio, A.; Grande, M.; Fassi, I. Rapid Prototyping of Bio-Inspired Dielectric Resonator Antennas for Sub-6 GHz Applications. Micromachines 2021, 12, 1046. [Google Scholar] [CrossRef]
- Iqbal, A.; Nasir, J.; Qureshi, M.B.; Khan, A.A.; Rehman, J.U.; Owais; Rahman, H.U.; Fayyaz, M.A.B.; Nawaz, R. A CPW fed quad-port MIMO DRA for sub-6 GHz 5G applications. PLoS ONE 2022, 17, e0268867. [Google Scholar] [CrossRef] [PubMed]
- Vellucci, S.; Toscano, A.; Bilotti, F.; Monti, A.; Barbuto, M. Towards waveform-selective cloaking devices exploiting circuit-loaded metasurfaces. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1861–1862. [Google Scholar]
- Vellucci, S.; Monti, A.; Barbuto, M.; Toscano, A.; Bilotti, F. Recent developments in the design of waveform-selective mantle cloaks for antenna applications. In Proceedings of the 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Espoo, Finland, 27 August–1 September 2018; pp. 421–423. [Google Scholar]
- Vellucci, S.; Toscano, A.; Bilotti, F.; Monti, A.; Barbuto, M. Design of waveform-selective mantle cloaks for antenna applications. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1319–1320. [Google Scholar]
- Younesiraad, H.; Bemani, M.; Nikmehr, S. Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach. IET Microw. Antennas Propag. 2018, 13, 278–285. [Google Scholar] [CrossRef]
- Lee, D. Study of metasurface coated bowtie antenna to decouple closely coupled arrays. AIP Adv. 2022, 12, 115108. [Google Scholar] [CrossRef]
- Pawar, S.; Skinner, H.G.; Suh, S.-Y.; Yakovlev, A.B. Cloaking of Equilateral Triangle Patch Antennas and Antenna Arrays with Planar Coated Metasurfaces. Sensors 2023, 23, 5517. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Skinner, H.G.; Suh, S.-Y.; Yakovlev, A.B. Cloaking of Rectangular Patch Antenna Arrays with Coated Metasurfaces. In Proceedings of the 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR, USA, 23–28 July 2023; pp. 1631–1632. [Google Scholar] [CrossRef]
- CST Microwave Studio 2019. Available online: https://www.cst.com (accessed on 18 December 2023).
- Goulas, A.; Zhang, S.; Cadman, D.A.; Järveläinen, J.; Mylläri, V.; Whittow, W.G.; Vardaxoglou, J.C.; Engstrøm, D.S. The Impact of 3D Printing Process Parameters on the Dielectric Properties of High Permittivity Composites. Designs 2019, 3, 50. [Google Scholar] [CrossRef]
Ref. | Decoupling Approach | Frequency Bands (GHz) | Array Application | Antenna Element Separation (mm) | Reflection Coefficient (dB) | Coupling Reduction (dB) | Main Lobe Gain Enhancement (dB) |
---|---|---|---|---|---|---|---|
[22] | Cloaking (Circular Cloaks) | LF 1: 3.07 HF 2: 3.33 | Not addressed | 10 | LF 1: −12 (C 3) −17 (Dc 4) HF 2: −11.5 (C 3) −16 (Dc 4) | Not addressed | LF 1: ~2 HF 2: ~1.5 (Gain pattern restored) |
[25] | Cloaking (Elliptical Cloaks) | LF 1: 3 HF 2: 3.33 | Not addressed | 16 | LF 1: −19 (C 3) −20 (Dc 4) HF 2: −12 (C 3) −21 (Dc 4) | LF 1: ~25.5 HF 2: ~29.5 | LF 1: ~1 HF 2: ~1 (Gain pattern restored) |
[26] | Cloaking (Circular Cloaks) | LF 1: 0.92 HF 2: 3.2 | Not addressed | 36 | At LF 1: −14 At HF 2: −20 | Not addressed | At HF 2: ~5 (Gain pattern restored) |
[27] | Cloaking (Elliptical Cloaks) | LF 1: 4.5 HF 2: 5.5 | Possible but not addressed | 3 | LF 1: −18 (C 3) −30 (Dc 4) HF 2: −12 (C 3) −30 (Dc 4) | LF 1: ~20 HF 2: ~20 | LF 1: ~1.32 HF 2: ~3 (Gain pattern restored) |
[29] | Cloaking (Circular Cloaks) | LF 1: 0.79–0.86 HF 2: 1.9–2.2 | Not addressed | ~36.3 | LF 1: −25 (C 3) −18 (Dc 4) HF 2: −8 (C 3) −17.5 (Dc 4) | At HF 2: ~10 | At HF 2: ~2–3 (Gain pattern restored) |
[30] | Cloaking (Circular Cloaks) | LF 1: 0.69–0.96 HF 2: 1.71–2.71 | LF 1 antenna placed over 2 × 3 HF 2 array | ~20 | Not addressed | Not addressed | For HF 2 array: ~4 |
[37] | C-PDDN 5 | LF 1: 2.3–2.4 HF 2: 2.4–2.48 | Possible but not addressed | 96.5 | LF 1: −20 (C 3) −40 (Dc 4) HF 2: −15 (C 3) −20 (Dc 4) | LF 1: ~21 HF 2: ~21 | Not addressed |
[38] | FSS 6 Radiator | LF 1: 1.8–2.7 HF 2: 3.3–3.8 | LF 1 antenna placed over 2 × 2 HF 2 array | ~25 | At LF 1: −22.5 (Dc 4) For HF 2 array: −27.5 (Dc 4) | At LF 1: ~25 At HF 2: ~21 | Gain enhancement not addressed. Peak gain: At LF 1: ~7 For HF 2 array: ~9 |
[40] | Slot Loading | LF 1: 0.69–0.96 HF 2: 1.7–2.4 | LF 1 antenna placed over 2 × 2 HF 2 array | ~33 | At LF 1: −25 (Dc 4) For HF 2 array: −30 (Dc 4) | At LF 1: ~30 At HF 2: ~30 | Gain enhancement not addressed. Peak gain: At LF 1: ~8 For HF 2 array: ~12 |
[41] | 2.5 D Cloak Loading | LF 1: 1.64–2.56 HF 2: 4.4–5.0 | LF 1 antenna placed over HF 2 array | 40 | At LF 1: −25 (Dc 4) For HF 2 array: −20 (Dc 4) | At LF 1: ~25 At HF 2: ~25 | Peak gain: At LF 1: ~7 At HF 2: ~7.2 |
PW 7 | Cloaking (Planar Cloaks) | LF 1: 4.9 HF 2: 5.2 | Interleaved array (side-by-side antenna placement) | 2 | LF 1 array:>−10 (C 3) ~−15 (Dc 4) HF 2 array:>−10 (C 3) ~−12 (Dc 4) | At LF 1 array:~12.5 At HF 2 array:~12.5 | At LF 1 array: ~3.2 At HF 2 array: ~8.3 (gain pattern for each array is restored) |
PW 7 | Cloaking (Planar Cloaks) | LF 1: 4.5 HF 2: 4.7 | Interleaved array (side-by-side antenna placement) | 1.5 | LF 1 array:−12 (C 3) −20 (Dc 4) HF 2 array:−11 (C 3) −18 (Dc 4) | At LF 1 array: ~8 At HF 2 array: ~12 | At LF 1 array: ~3.7 At HF 2 array: ~6.8 (gain pattern for each array is restored) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawar, S.; Lee, D.; Skinner, H.; Suh, S.-Y.; Yakovlev, A. Decoupling and Cloaking of Rectangular and Circular Patch Antennas and Interleaved Antenna Arrays with Planar Coated Metasurfaces at C-Band Frequencies—Design and Simulation Study. Sensors 2024, 24, 291. https://doi.org/10.3390/s24010291
Pawar S, Lee D, Skinner H, Suh S-Y, Yakovlev A. Decoupling and Cloaking of Rectangular and Circular Patch Antennas and Interleaved Antenna Arrays with Planar Coated Metasurfaces at C-Band Frequencies—Design and Simulation Study. Sensors. 2024; 24(1):291. https://doi.org/10.3390/s24010291
Chicago/Turabian StylePawar, Shefali, Doojin Lee, Harry Skinner, Seong-Youp Suh, and Alexander Yakovlev. 2024. "Decoupling and Cloaking of Rectangular and Circular Patch Antennas and Interleaved Antenna Arrays with Planar Coated Metasurfaces at C-Band Frequencies—Design and Simulation Study" Sensors 24, no. 1: 291. https://doi.org/10.3390/s24010291
APA StylePawar, S., Lee, D., Skinner, H., Suh, S.-Y., & Yakovlev, A. (2024). Decoupling and Cloaking of Rectangular and Circular Patch Antennas and Interleaved Antenna Arrays with Planar Coated Metasurfaces at C-Band Frequencies—Design and Simulation Study. Sensors, 24(1), 291. https://doi.org/10.3390/s24010291