Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements
<p>Scheme of multilayered [Cu(3 nm)/FeNi(100 nm)]<sub>5</sub>/Cu (150 nm)/[FeNi (3 nm)/Cu(150 nm)/[FeNi (3 nm)/Cu(150 nm)/[FeNi(100 nm)/Cu(3 nm) ]<sub>5</sub> element in magnetoimpedance geometry. Ht—direction of the application of technological magnetic field during multilayered structure deposition. Iac—direction of the flow of the high frequency not alternating current during magnetoimpedance applications. Note that the structures are shown in their real scale (<b>a</b>). Photograph of 1–6 lithographic MI element arrangements; l is a length of 10 mm (<b>b</b>).</p> "> Figure 2
<p>Scheme of FMR measurements. Here, M is the magnetization vector, H is an external constant magnetic field, and h is a microwave rf field. For definition of all angles, see also the main text.</p> "> Figure 3
<p>VSM (<b>a</b>) and magneto-optical Kerr (<b>b</b>) in-plane magnetic hysteresis loops measured along the long (red curves) and short (black curves) sides of MI elements. Magnetic domain images obtained from both sides of the MI element A at zero magnetic field (<b>c</b>). Here “up” is for the measurements increasing in the external field starting from the saturation in the maximum negative field and “down” is for the measurements decreasing in the external field starting from the saturation in the maximum positive external field.</p> "> Figure 4
<p>Kerr microscopy surface magnetic hysteresis loops measured along the short side of MI elements with the scheme of magnetization of elements: (<b>a</b>) magnetization from −100 Oe to 100 Oe and back; (<b>b</b>) magnetization from −100 Oe to 0 Oe and back; (<b>c</b>) image of magnetic domains of MI element corresponding to the external magnetic field H<sub>ext</sub> = 7 Oe. Here “up” is for the measurements increasing in the external field starting from the saturation in the maximum negative field and “down” is for the measurements decreasing in the external field starting from the saturation in the maximum positive external field. Orientation of the external magnetic field is indicated by the red arrow; orientation of the magnetization of the top layer is indicated by the black arrow; orientation of the magnetization of the bottom layer is indicated by the blue arrow.</p> "> Figure 5
<p>(<b>a</b>) Dependence of the skin penetration depth on the value of the magnetic field at different frequencies of the exciting electromagnetic field for the f values in the range of the experimental studies. (<b>b</b>) The angular dependence of the resonant field for MI elements A and B at a frequency of 1.3 GHz. Lines 1 and 2 are theoretical calculations of <span class="html-italic">N<sub>x</sub></span> = 0.027 and <span class="html-italic">N<sub>x</sub></span> = 0.022, respectively, points of the experiment. (<b>c</b>) Distribution of <span class="html-italic">H<sub>a</sub></span> and <span class="html-italic">M<sub>eff</sub></span> values along the long side of MI element A.</p> "> Figure 6
<p>Schematic representation of the geometry of local FMR measurements for MI strip element: external magnetic field is applied along the long (<b>a</b>) and short (<b>b</b>) sides of the element. See also the main text.</p> "> Figure 7
<p>Frequency dependence of maximum MI ratio for real part of the impedance ratio (<b>a</b>); field dependence of MI ratio for resistance: (<b>b</b>,<b>c</b>) A, (<b>d</b>) B. Numbers in the legend correspond to the value of the frequency of the exciting current.</p> ">
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Static Magnetic Properties
3.2. Dynamic Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Liu, T.; Bi, L.; Deng, L. Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics. J. Alloys Compd. 2021, 860, 158235. [Google Scholar] [CrossRef]
- Yachmeneva, A.E.; Pushkareva, S.S.; Reznikc, R.R.; Khabibullina, R.A.; Ponomareva, D.S. Arsenides-and related III-V materials-based multilayered structures for terahertz applications: Various designs and growth technology. Prog. Cryst. Growth Charact. Mater. 2020, 66, 100485. [Google Scholar] [CrossRef]
- Pan, L.; Xie, H.; Cheng, X.; Zhao, C.; Feng, H.; Cao, D.; Wang, J.; Liu, Q. Tuning the ferromagnetic resonance frequency of soft magnetic film by patterned permalloy micro-stripes with stripe-domain. J. Magn. Magn. Mater. 2018, 457, 46–51. [Google Scholar] [CrossRef]
- Melzer, M.; Kaltenbrunner, M.; Makarov, D.; Karnaushenko, D.; Karnaushenko, D.; Sekitani, T.; Someya, T.; Schmidt, O.G. Imperceptible magnetoelectronics. Nat. Commun. 2015, 6, 6080. [Google Scholar] [CrossRef]
- Nabaei, V.; Chandrawati, R.; Heidari, H. Magnetic biosensors: Modelling and simulation. Biosens. Bioelectron. 2018, 103, 69–86. [Google Scholar] [CrossRef]
- Semirov, A.V.; Derevyanko, M.S.; Bukreev, D.A.; Moiseev, A.A.; Kudryavtsev, V.O.; Safronov, A.P. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites. J. Magn. Magn. Mater. 2016, 415, 97–101. [Google Scholar] [CrossRef]
- Sobczak-Kupiec, A.; Venkatesan, J.; AlAnezi, A.A.; Walczyk, D.; Farooqi, A.; Malina, D.; Hosseinie, S.H.; Tyliszczak, B. Magnetic nanomaterials and sensors for biological detection. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2459–2473. [Google Scholar] [CrossRef]
- Ren, C.; Bayin, Q.; Feng, S.; Fu, Y.; Ma, X.; Guo, J. Biomarkers detection with magnetoresistance-based sensors. Biosens. Bioelectron. 2020, 165, 112340. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, Y.; Lei, C.; Luo, J.; Xie, S.; Pu, H. Magnetic impedance biosensor: A review. Biosens. Bioelectron. 2017, 90, 418–435. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.Y.; Wang, B.C.; He, Y.; Li, H.Y.; Liu, M.; Rao, J.J.; Wu, Z.Z.; Xie, S.R.; Luo, J. A giant magnetoimpedance-based separable-type method for supersensitive detection of 10 magnetic beads at high frequency. Sens. Actuators A Phys. 2019, 300, 111656. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Safronov, A.P.; Orue, I.; Golubeva, E.V.; Lepalovskij, V.N.; Svalov, A.V.; Chlenova, A.A.; Kurlyandskaya, G.V. Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection. Biosens. Bioelectron. 2018, 117, 366–472. [Google Scholar] [CrossRef] [PubMed]
- Fodil, K.; Denoual, M.; Dolabdjian, C.; Harnois, M.; Senez, V. Dynamic sensing of magnetic nanoparticles in microchannel using GMI technology. IEEE Trans. Magn. 2013, 49, 93–96. [Google Scholar] [CrossRef]
- Correa, M.A.; Bohn, F.; Chesman, C.; da Silva, R.B.; Viegas, A.D.C.; Sommer, R.L. Tailoring the magnetoimpedance effect of NiFe/Ag multilayer. J. Phys. D Appl. Phys. 2010, 43, 295004–295007. [Google Scholar] [CrossRef]
- Antonov, A.S.; Gadetskii, S.N.; Granovskii, A.B.; D’yachkov, A.L.; Paramonov, V.P.; Perov, N.S.; Prokoshin, A.F.; Usov, N.A.; Lagar’kov, A.N. Giant magnetoimpedance in amorphous and manocrystalline multilayers. Fiz. Met. Metalloved. 1997, 83, 60–71. [Google Scholar]
- Tumanski, S. Handbook of Magnetic Measurements; CRC Press: Boca Raton, FL, USA, 2011; Volume 719. [Google Scholar] [CrossRef]
- Hida, R.; Falub, C.V.; Perraudeau, S.; Morin, C.; Favier, S.; Mazel, Y.; Saghi, Z.; Michel, J.P. Nanolaminated FeCoB/FeCo and FeCoB/NiFe soft magnetic thin films with tailored magnetic properties deposited by magnetron sputtering. J. Magn. Magn. Mater. 2018, 453, 211–219. [Google Scholar] [CrossRef]
- Naumova, L.I.; Milyaev, M.A.; Zavornitsyn, R.S.; Pavlova, A.Y.; Maksimova, I.K.; Krinitsina, T.P.; Chernyshova, T.A.; Proglyado, V.V.; Ustinov, V.V. High-sensitive sensing elements based on spin valves with antiferromagnetic interlayer coupling. Phys. Met. Metallogr. 2019, 120, 653–659. [Google Scholar] [CrossRef]
- Sugita, Y.; Fujiwara, H.; Sato, T. Critical thickness and perpendicular anisotropy of evaporated permalloy films with stripe domains. Appl. Phys. Lett. 1967, 10, 229–231. [Google Scholar] [CrossRef]
- Svalov, A.V.; Aseguinolaza, I.R.; Garcia-Arribas, A.; Orue, I.; Barandiaran, J.M.; Alonso, J.; Fernández-Gubieda, M.L.; Kurlyandskaya, G.V. Structure and magnetic properties of thin Permalloy films near the “transcritical” state. IEEE Trans. Magn. 2010, 46, 333–336. [Google Scholar] [CrossRef]
- Egelhoff, W.F.; Bonevich, J.; Pong, P.; Beauchamp, C.R.; Stafford, G.R.; Unguris, J.; McMichael, R.D. 400-fold reduction in saturation field by interlayering. J. Appl. Phys. 2009, 105, 013921. [Google Scholar] [CrossRef]
- Vas’kovskii, V.O.; Savin, P.A.; Volchkov, S.O.; Lepalovskii, V.N.; Bukreev, D.A.; Buchkevich, A.A. Nanostructuring effects in soft magnetic films and film elements with magnetic impedance. Tech. Phys. 2013, 58, 105–110. [Google Scholar] [CrossRef]
- Svalov, A.V.; Gonzalez Asensio, B.; Chlenova, A.A.; Savin, P.A.; Larranaga, A.; Gonzalez, J.M.; Kurlyandskaya, G.V. Study of the effect of the deposition rate and seed layers on structure and magnetic properties of magnetron sputtered FeNi films. Vacuum 2015, 119, 245–249. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Svalov, A.V.; Fernandez, E.; Garcia-Arribas, A.; Barandiaran, J.M. FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance. J. Appl. Phys. 2010, 107, 09C502. [Google Scholar] [CrossRef]
- Cos, D.; Barandiarán, J.M.; García-Arribas, A.; Vas’kovskiy, V.O.; Kurlyandskaya, G.V. Longitudinal and Transverse Magnetoimpedance in FeNi/Cu/FeNi Multilayers with Longitudinal and Transverse Anisotropy. IEEE Trans. Magn. 2008, 44, 3863–3866. [Google Scholar] [CrossRef]
- Kikuchi, H.; Sumida, C.; Nakai, T.; Hashi, S.; Ishiyama, K. Effects of dc bias current on behaviors and sensitivity of thin-film magnetoimpedance element. IEEE Trans. Magn. 2017, 53, 4003704. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Chlenova, A.A.; Fernández, E.; Lodewijk, K.J. FeNi-based flat magnetoimpedance nanostructures with open magnetic flux: New topological approaches. J. Magn. Magn. Mater. 2015, 383, 220–225. [Google Scholar] [CrossRef]
- Melnikov, G.Y.; Vazhenina, I.G.; Iskhakov, R.S.; Boev, N.M.; Komogortsev, S.V.; Svalov, A.V.; Kurlyandskaya, G.V. Magnetic Properties of FeNi/Cu-Based Lithographic Rectangular Multilayered Elements for Magnetoimpedance Applications. Sensors 2023, 23, 6165. [Google Scholar] [CrossRef] [PubMed]
- Komogortsev, S.V.; Vazhenina, I.G.; Kleshnina, S.A.; Iskhakov, R.S.; Lepalovskij, V.N.; Pasynkova, A.A.; Svalov, A.V. Advanced Characterization of FeNi-Based Films for the Development of Magnetic Field Sensors with Tailored Functional Parameters. Sensors 2022, 22, 3324. [Google Scholar] [CrossRef]
- Vazhenina, I.G.; Iskhakov, R.S.; Yakovchuk, V. Characteristics of Angular Dependences of Parameters of Ferromagnetic and Spin-Wave Resonance Spectra of Magnetic Films. Phys. Met. Metallogr. 2022, 123, 1084–1090. [Google Scholar] [CrossRef]
- Antonov, A.S.; Iakubov, I.T. The high-frequency magneto-impedance of a sandwich with transverse magnetic anisotropy. J. Phys. D Appl. Phys. 1999, 32, 1204–1208. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Kurlyandskaya, G.V. Modeling of magnetoimpedance effect in nanostructured multilayered films. J. Phys. Conf. Ser. 2019, 1389, 012132. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Antonov, A.S. A model for asymmetric magnetoimpedance effect in multilayered bimagnetic films. J. Magn. Magn. Mater. 2016, 420, 51–55. [Google Scholar] [CrossRef]
- Delooze, P.; Panina, L.V.; Mapps, D.J.; Ueno, K.; Sano, H. Effect of transverse magnetic field on thin-film magneto impedance and application to magnetic recording. J. Magn. Magn. Mater. 2004, 272–276, 2266–2268. [Google Scholar] [CrossRef]
- Ripka, P.; Zaveta, K. Magnetic Sensors: Principles and Applications. In Handbook of Magnetic Materials; Buschow, K.H.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 18, pp. 347–420. [Google Scholar]
- de Cos, D.; García-Arribas, A.; Barandiarán, J.M. Analysis of magnetoimpedance measurements at high frequency using a microstrip transmission line. Sens. Actuators A 2004, 115, 368–375. [Google Scholar] [CrossRef]
- Moritz, H. Optical single layer lift-off process. IEEE Trans. Electron Devices 1985, 32, 672–676. [Google Scholar] [CrossRef]
- Belyaev, B.A.; Gorchakovskii, A.A.; Boev, N.M.; Izotov, A.I.; Shabanov, D.A. Ferromagnetic Resonance Scanning Spectrometer. Patent RU 2747100C1, 26 April 2021. Available online: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2747100&TypeFile=html (accessed on 2 September 2024).
- Chen, D.-X.; Pardo, E.; Sanche, A. Demagnetizing factors for rectangular prisms. IEEE Trans. Magn. 2005, 41, 2077–2088. [Google Scholar] [CrossRef]
- Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 1998, 83, 3432–3434. [Google Scholar] [CrossRef]
- Shcherbinin, S.V.; Svalov, A.V.; Melnikov, G.Y.; Kurlyandskaya, G.V. Angular Dependence of the Ferromagnetic Resonance Parameters of [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 Nanostructured Multilayered Elements in the Wide Frequency Range. Nanomaterials 2020, 10, 433. [Google Scholar] [CrossRef]
- Antonov, A.; Gadetsky, S.; Granovsky, A.; D’yatckov, A.; Sedova, M.; Perov, N.; Usov, N.; Furmanova, T.; Lagar’kov, A. High-frequency giant magneto-impedance in multilayered magnetic films. Phys. A Stat. Mech. Its Appl. 1997, 241, 414–419. [Google Scholar] [CrossRef]
- Jayasekara, W.P.; Bain, J.A.; Kryder, M.H. High frequency initial permeability of NiFe and FeAlN. IEEE Trans. Magn. 1998, 34, 1438–1440. [Google Scholar] [CrossRef]
- Yelon, A.; Menard, D.; Britel, M.; Ciureanu, P. Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl. Phys. Lett. 1996, 69, 3084–3085. [Google Scholar] [CrossRef]
- Valenzuela, R.; Zamorano, R.; Alvarez, G.; Gutierrez, M.P.; Montiel, H. Magnetoimpedance, ferromagnetic resonance, and low field microwave absorption in amorphous ferromagnets. J. Non-Cryst. Solids 2007, 353, 768–772. [Google Scholar] [CrossRef]
- Grosz, A.; Haji-Sheikh, M.J.; Mukhopadhyay, S.C. High Sensitivity Magnetometers; Springer: Berlin/Heidelberg, Germany, 2017; Volume 19. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Svalov, A.V.; Kurlyandskaya, G.V. Influence of the parameters of permalloy-based multilayer film structures on the sensitivity of magnetic impedance effect. Phys. Met. Metallogr. 2021, 122, 223–229. [Google Scholar] [CrossRef]
- Feng, Z.; Zhi, S.; Wei, M.; Zhou, Y.; Liu, C.; Lei, C. An integrated three-dimensional micro-solenoid giant magnetoimpedance sensing system based on MEMS technology. Sens. Actuators A Phys. 2019, 299, 111640. [Google Scholar] [CrossRef]
- Solovev, P.N.; Belyaev, B.A.; Boev, N.M.; Skomorokhov, G.V.; Izotov, A.V. Magnetic anisotropy and ferromagnetic resonance in inhomogeneous demagnetizing fields near edges of thin magnetic films. J. Phys. Cond. Matt. 2024, 36, 195803. [Google Scholar] [CrossRef] [PubMed]
- Malagò, P.; Lumetti, S.; Holzmann, D.; Ortner, M.; Roshanghias, A. Magnetic field sensors for non-invasive current monitoring in wire-bond-less power modules. Proceedings 2024, 97, 100. [Google Scholar] [CrossRef]
- Zare, M.; Jamilpanah, L.; Barough, V.; Sadeghi, A.; Ghanaatshoar, M.; Mohseni, M. Role of electrospun fibers coated on magnetoimpedance effect of Co-based ribbons. Appl. Phys. A Solids Surf. 2024, 130, 90. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Q.; Yanfeng, Y. Design of a novel magnetic induction switch with a permalloy film and a trans-impedance amplifier circuit. Inventions 2024, 9, 4. [Google Scholar] [CrossRef]
- Amalou, F.; Gijs, M.A.M. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons. Appl. Phys. Lett. 2002, 81, 1654–1656. [Google Scholar] [CrossRef]
- Mu, Y.; Zhu, W.; Zhang, M.; Yi, Y. High-sensitivity giant magneto-impedance microsensor with grooved grating patterned magnetic films. IEEE Trans. Magn. 2024, 24, 25422–25429. [Google Scholar] [CrossRef]
- Karnaushenko, D.; Karnaushenko, D.D.; Makarov, D.; Baunack, S.; Schäfer, R.; Schmidt, O.G. Self-assembled on-chip-integrated giant magneto-impedance sensorics. Adv. Mater. 2015, 27, 6582–6589. [Google Scholar] [CrossRef]
- García, C.; Florez, J.M.; Vargas, P.; Ross, C.A. Effect of the exchange bias coupling strength on the magnetoimpedance of IrMn/NiFe films. J. Appl. Phys. 2011, 109, 07D735. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnikov, G.Y.; Komogortsev, S.V.; Svalov, A.V.; Gorchakovskiy, A.A.; Vazhenina, I.G.; Kurlyandskaya, G.V. Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements. Sensors 2024, 24, 6308. https://doi.org/10.3390/s24196308
Melnikov GY, Komogortsev SV, Svalov AV, Gorchakovskiy AA, Vazhenina IG, Kurlyandskaya GV. Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements. Sensors. 2024; 24(19):6308. https://doi.org/10.3390/s24196308
Chicago/Turabian StyleMelnikov, Grigory Yu., Sergey V. Komogortsev, Andrey V. Svalov, Alexander A. Gorchakovskiy, Irina G. Vazhenina, and Galina V. Kurlyandskaya. 2024. "Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements" Sensors 24, no. 19: 6308. https://doi.org/10.3390/s24196308