Multi-Frequency Asymmetric Absorption–Transmission Metastructures–Photonic Crystals and Their Application as a Refractive Index Sensor
<p>Schematic diagram of the MPC: (<b>a</b>) ordinary periodic structure; (<b>b</b>) introducing the analyte layer.</p> "> Figure 2
<p>Forward absorption and backward transmission curves in ordinary periodic MPC.</p> "> Figure 3
<p>(<b>a</b>) Forward absorption and backward transmission curves of the MPC introduced into the analyte layer. The black solid line represents the forward absorption curve, the red solid line indicates the backward transmission curve, and the black dashed arrow marks the resonance frequency. (<b>b</b>) Energy distribution of forward and backward incident electric fields at resonance frequency points.</p> "> Figure 4
<p>Forward absorption curves corresponding to different RI: (<b>a</b>) frequency range from 12 to 18 GHz, (<b>b</b>) frequency range from 17.00 to 17.25 GHz, and (<b>c</b>) relationship between wavelength and forward absorption curves.</p> "> Figure 5
<p>When <span class="html-italic">N</span> = 3, (<b>a</b>) shows the relationship between the resonance wavelength and RI, and (<b>b</b>) shows the linear fitting of the resonance frequency <span class="html-italic">f</span> and resonance wavelength <span class="html-italic">λ</span> to RI.</p> "> Figure 6
<p>When <span class="html-italic">N</span> = 4, (<b>a</b>) shows the change in the forward absorption curve with <span class="html-italic">n<sub>c</sub></span>, and (<b>b</b>) shows the linear fitting of the resonance frequency with RI. The blue dots represent the sampling points at various RI, while the black dashed lines indicate the fitting curves.</p> "> Figure 7
<p>When <span class="html-italic">N</span> = 5, (<b>a</b>) shows the change in the forward absorption curve with <span class="html-italic">n<sub>c</sub></span>, and (<b>b</b>) shows the linear fitting of the resonance frequency with RI. The orange dots represent the sampling points at various RI, while the black dashed lines indicate the fitting curves.</p> "> Figure 8
<p>Resonance frequency and period number <span class="html-italic">N</span> = 3, <span class="html-italic">N</span> = 4, and <span class="html-italic">N</span> = 5 are related in various cases.</p> "> Figure 9
<p>The linear fitting of the resonance frequency with RI at (<b>a</b>) <span class="html-italic">φ</span> = 30° and (<b>b</b>) <span class="html-italic">φ</span> = 50°. The green and blue stars represent the sampling points for the different RI, while the black dashed lines indicate the fitted curves.</p> "> Figure 10
<p>Resonance frequency and tilt angles <span class="html-italic">φ</span> = 30°, <span class="html-italic">φ</span> = 40°, and <span class="html-italic">φ</span> = 50° are related in various cases.</p> ">
Abstract
:1. Introduction
2. The Theoretical Model
3. Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces. Opt. Lett. 2016, 41, 3142–3145. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Bai, F.Q. Dual-band terahertz polarization converter with high-efficiency asymmetric transmission. Opt. Mater. Express 2020, 10, 1853–1861. [Google Scholar] [CrossRef]
- Liu, D.J.; Xiao, Z.Y.; Wang, Z.H. Multi-Band Asymmetric Transmission and 90° Polarization Rotator Based on Bi-Layered Metasurface with F-Shaped Structure. Plasmonics 2017, 12, 445–452. [Google Scholar] [CrossRef]
- Tao, H.; Chieffo, L.R.; Brenckle, M.A.; Siebert, S.M.; Liu, M.; Strikwerda, A.C.; Fan, K.; Kaplan, D.L.; Zhang, X.; Averitt, R.D.; et al. Metamaterials on Paper as a Sensing Platform. Adv. Mater. 2011, 23, 3197–3201. [Google Scholar] [CrossRef]
- Wong, R.Y.M.; Tso, C.Y.; Chao, C.Y.H.; Huang, B.; Wan, M.P. Ultra-broadband asymmetric transmission metallic gratings for subtropical passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2018, 186, 330–339. [Google Scholar] [CrossRef]
- Stephen, L.; Yogesh, N.; Subramanian, V. Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial. J. Appl. Phys. 2018, 123, 033103. [Google Scholar] [CrossRef]
- Shang, G.; Guan, C.; Zhang, K.; Wu, Q.; Liu, J.; Ding, X.; Li, H.; Burokur, S.N.; Ding, X. Design of a frequency-multiplexed metasurface with asymmetric transmission. Opt. Lett. 2022, 47, 4504–4507. [Google Scholar] [CrossRef]
- Li, S.; Huang, L.R.; Ling, Y.H.; Liu, W.B.; Ba, C.F.; Li, H.H. High-performance asymmetric optical transmission based on coupled complementary subwavelength gratings. Sci. Rep. 2019, 9, 17117. [Google Scholar] [CrossRef]
- Mandatori, A.; Bertolotti, M.; Sibilia, C. Asymmetric transmission of some two-dimensional photonic crystals. J. Opt. Soc. Am. B 2007, 24, 685–690. [Google Scholar] [CrossRef]
- Chen, K.; Feng, Y.; Cui, L.; Zhao, J.; Jiang, T.; Zhu, B. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial. Sci. Rep. 2017, 7, 42802. [Google Scholar] [CrossRef]
- Xu, T.; Lezec, H.J. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat. Commun. 2014, 5, 4141. [Google Scholar] [CrossRef]
- Sheikh Ansari, A.; Iyer, A.K.; Gholipour, B. Asymmetric transmission in nanophotonics. Nanophotonics 2023, 12, 2639–2667. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Chen, C.; Bai, B.; Zhang, X.; Zhang, H.; Shao, Q.; Wu, B.; Zhao, B. Dynamically adjustable and high-contrast asymmetric optical transmission based on bilateral compound metallic gratings. Opt. Laser Technol. 2021, 140, 107033. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Fan, R.H.; Xiong, B.; Peng, R.W.; Wang, M. Constructing Metastructures with Broadband Electromagnetic Functionality. Adv. Mater. 2020, 32, 1904646. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.R.; Cheng, Y.Z.; Zhao, J.C.; Mao, X.S. Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators. Mod. Phys. Lett. B 2018, 32, 1850366. [Google Scholar] [CrossRef]
- An, Q.; Li, D.; Liao, W.; Liu, T.; Joralmon, D.; Li, X.; Zhao, J. A Novel Ultra-Wideband Electromagnetic-Wave-Absorbing Metastructure Inspired by Bionic Gyroid Structures. Adv. Mater. 2023, 35, 2300659. [Google Scholar] [CrossRef]
- Tang, G.J.; He, X.T.; Shi, F.L.; Liu, J.W.; Chen, X.D.; Dong, J.W. Topological photonic crystals: Physics, designs, and applications. Laser Photonics Rev. 2022, 16, 2100300. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.N.; Kazanskiy, N. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Baba, T. Slow light in photonic crystals. Nat. Photonics 2008, 2, 465–473. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Wang, F.; Su, W.; Yang, L.; Lv, J.; Fu, G.; Li, X.; Liu, Q.; Sun, T. Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection. Results Phys. 2020, 18, 103240. [Google Scholar] [CrossRef]
- Gao, Y.F.; Sun, J.P.; Xu, N.; Jiang, Z.; Hou, Q.C.; Song, H.; Jin, M.C.; Zhang, C. Manipulation of topological beam splitter based on honeycomb photonic crystals. Opt. Commun. 2021, 483, 126646. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Wei, B.; Yang, D.; Luo, L.; Ma, D.; Huang, S. Bio-Inspired Highly Brilliant Structural Colors and Derived Photonic Superstructures for Information Encryption and Fluorescence Enhancement. Adv. Sci. 2023, 10, 2302240. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhao, C.L.; Yuan, J.; Ye, M.; Wang, J.; Zhang, Z.; Jin, S. Highly reflective long period fiber grating sensor and its application in refractive index sensing. Sens. Actuators B 2014, 193, 185–189. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B 2017, 249, 168–176. [Google Scholar] [CrossRef]
- Shokati, E.; Asgari, S.; Granpayeh, N. Dual-Band Polarization-Sensitive Graphene Chiral Metasurface and its Application as a Refractive Index Sensor. IEEE Sens. J. 2019, 19, 9991–9996. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhou, H.; Hong, X.; Geng, Y. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating. J. Phys. D Appl. Phys. 2016, 49, 355102. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Li, Z.; Li, Z.; Cheng, H.; Chen, S.; Tian, J. High-quality-factor multiple Fano resonances for refractive index sensing. Opt. Lett. 2018, 43, 1842–1845. [Google Scholar] [CrossRef]
- Wan, B.F.; Xu, Y.; Zhou, Z.W.; Zhang, D.; Zhang, H.F. Theoretical Investigation of a Sensor Based on One-Dimensional Photonic Crystals to Measure Four Physical Quantities. IEEE Sens. J. 2021, 21, 2846–2853. [Google Scholar] [CrossRef]
- Kumar, N.; Suthar, B.; Nayak, C.; Bhargava, A. Analysis of a gas sensor based on one-dimensional photonic crystal structure with a designed defect cavity. Phys. Scr. 2023, 98, 065506. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Zhang, Y.; Tong, C.; Guo, X.; Shen, J.; Li, C. Terahertz band range adjustable hyperbolic metamaterial refractive index sensor. Results Phys. 2023, 49, 106477. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Wang, Z.; Chen, Y.; Li, M.; Zhou, J.; Wu, J.; Wang, J. Perfect absorption and strong phonon polariton with a graphene-based silicon carbide grating and Tamm plasmonic structures. J. Opt. Soc. Am. B 2022, 39, 2164–2171. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Chen, Y.; Hu, Z.-D.; Wu, J.; Wang, J. High-sensitivity multi-channel refractive-index sensor based on a graphene-based hybrid Tamm plasmonic structure. Opt. Mater. Express 2021, 11, 3833–3843. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, J.; Xia, T.; Liu, N.; Liu, Q.H. A Necessary and Sufficient Condition for Having Independent TE and TM Modes in an Anisotropic Waveguide. IEEE Trans. Microwave Theory Tech. 2017, 65, 3660–3670. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Ahmed, A.M.; Shalaby, A.S.; Aly, A.H. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. Sci. Rep. 2020, 10, 9736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Zhong, S. Tunable multichannel terahertz filtering properties of dielectric defect layer in one-dimensional magnetized plasma photonic crystal. Opt. Commun. 2020, 473, 125985. [Google Scholar] [CrossRef]
- Fang, Y.T.; Zhang, Y.C. Perfect Nonreciprocal Absorption Based on Metamaterial Slab. Plasmonics 2018, 13, 661–667. [Google Scholar] [CrossRef]
- Wangberg, R.; Elser, J.; Narimanov, E.E.; Podolskiy, V.A. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J. Opt. Soc. Am. B 2006, 23, 498–505. [Google Scholar] [CrossRef]
- Sampath, D.; Narasimhan, V. One-Dimensional Defect Layer Photonic Crystal Sensor for Purity Assessment of Organic Solvents. ACS Omega 2024, 9, 9625–9632. [Google Scholar] [CrossRef]
- Sui, P.; Zhang, A.; Pan, F.; Chang, P.; Pan, H.; Liu, F.; Wang, J.; Cao, C. High sensitivity refractive index sensor with wide detection range and high linearity based on LSPR in hollow-core anti-resonance fiber. Opt. Laser Technol. 2022, 155, 108427. [Google Scholar] [CrossRef]
Parameter | Symbol | Quantity | |
---|---|---|---|
Ordinary Periodic MPC | MPC Containing the Analyte Layer | ||
Thickness of plasma layer | dm | 0.4 mm | 0.6 mm |
Thickness of porous silicon layer | df | 1.0 mm | 1.0 mm |
Length of hypotenuse | l | 20.0 mm | 20.0 mm |
Angle of inclination | φ | 40° | 40° |
The incidence angle of EMWs | θ | 50° | 50° |
Thickness of analyte layer | dc | / | 1.0 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, L.; Li, X.; Zhang, H. Multi-Frequency Asymmetric Absorption–Transmission Metastructures–Photonic Crystals and Their Application as a Refractive Index Sensor. Sensors 2024, 24, 6281. https://doi.org/10.3390/s24196281
Lei L, Li X, Zhang H. Multi-Frequency Asymmetric Absorption–Transmission Metastructures–Photonic Crystals and Their Application as a Refractive Index Sensor. Sensors. 2024; 24(19):6281. https://doi.org/10.3390/s24196281
Chicago/Turabian StyleLei, Lei, Xiang Li, and Haifeng Zhang. 2024. "Multi-Frequency Asymmetric Absorption–Transmission Metastructures–Photonic Crystals and Their Application as a Refractive Index Sensor" Sensors 24, no. 19: 6281. https://doi.org/10.3390/s24196281