Characterization of Flow with a V-Shaped NMR Sensor
<p><b>Left</b>: Picture of the V-sensor with the white PTFE cylinder in which the tube is positioned. <b>Right</b>: The V-shaped magnet arrangement (left side) and the closed probe for volumetric measurements of samples with an outer diameter up to 12 mm (right side).</p> "> Figure 2
<p>Experimental setup of the flow measurements with the NMR sensor. The sample was in a beaker (1) and stirred continuously with a magnetic stirrer to avoid sedimentation. A peristaltic pump (2) generates flow in a tube through the NMR sensor (3). The sample is returned to the beaker for a closed circuit.</p> "> Figure 3
<p>Experimental setup of the flow MRI measurements. The sample is stirred in a beaker (1) and pumped with the peristaltic pump (2) through the tomograph (4). A pressure compensation tank (3) reduced pulsation.</p> "> Figure 4
<p>Flow velocity as a function of the radial coordinate, including the power law fits, for water (<span style="color:blue">■</span>), 0.4% w/w CMC in water (■), 0.8% w/w CMC in water (<span style="color:red">■</span>), 1% w/w CMC in water (<span style="color:lime">■</span>) and anode slurry with 10.4% w/w solids content (<span style="color:gray">■</span>) for <span class="html-italic">v</span><sub>mean,vol</sub> = 4.8 cm/s. The flow profiles reflect the rheologic properties.</p> "> Figure 5
<p>Flow velocity profiles of the diluted anode slurry with a solids content of 10.4% w/w for <span class="html-italic">v</span><sub>mean,vol</sub> of 0.4 cm/s (<span style="color:#300000">■</span>), 0.8 cm/s (<span style="color:#790000">●</span>), 1.3 cm/s (<span style="color:#BF0000">▲</span>), 1.9 cm/s (<span style="color:#FF0400">▼</span>), 2.6 cm/s (<span style="color:#FF2E00">▲</span>), 3.1 cm/s (<span style="color:#FF5B00">●</span>), 3.6 cm/s (<span style="color:#FF8400">■</span>), 4.3 cm/s (<span style="color:#FFB000">▲</span>) and 4.8 cm/s (<span style="color:#FFDA00">■</span>). Additionally, a calculated Hagen–Poiseuille flow profile (<b><span style="color:#FC0000">--</span></b>) to provide evidence for the shear-thickening character of the anode slurry.</p> "> Figure 6
<p><b>Left</b>: Exemplary real (<span style="color:lime">▼</span>) and imaginary parts (<span style="color:blue">▲</span>) of a complex signal decay from a CPMG measurement on tap water. <b>Right</b>: Calculated phase shifts and mean flow velocities for even (■) and odd (<span style="color:red">●</span>) echoes of a CPMG measurement on tap water with a volumetrically determined <span class="html-italic">v</span><sub>mean,vol</sub> of 1.62 cm/s (red line) and τ<sub>e</sub> = 2.8 ms. As expected, only the odd echoes are sensitive to flow.</p> "> Figure 7
<p>Average phase shifts of the first 10 odd echoes as a function of τ<sub>e</sub> for different <span class="html-italic">v</span><sub>mean,vol</sub> between 0 cm/s (<span style="color:#FFFF6D">●</span>), 0.19 cm/s (<span style="color:yellow">▲</span>), 0.39 cm/s (<span style="color:#F1BF00">■</span>), 0.57 cm/s (<span style="color:#FF8100">●</span>), 0.78 cm/s (<span style="color:#FE5D00">▲</span>), 0.97 cm/s (<span style="color:#FF2600">▼</span>), 1.2 cm/s (<span style="color:#E40000">▲</span>), 1.41 cm/s (<span style="color:#8A0000">●</span>) and 1.62 cm/s (<span style="color:#300000">■</span>). B-splines are shown as guides to the eyes. The phase shifts for different flow velocities have a maximum at a specific τ<sub>e</sub>. Smaller velocities lead to a maximum at higher τ<sub>e</sub>.</p> "> Figure 8
<p>Mean flow velocities of tap water calculated from the phase shifts with a static measurement as a reference (■) and the average of the first 10 even echoes as reference (<span style="color:red">●</span>) as a function of <span class="html-italic">v</span><sub>mean,vol</sub>. A correlation line (<b>–</b>) was added as a guide to the eyes.</p> "> Figure 9
<p><b>Left</b>: Complex CPMG magnetization decay with <span class="html-italic">v</span><sub>mean,vol</sub> = 0 cm/s on an anode slurry (<span style="color:lime">▼</span>: real part, <span style="color:blue">▲</span>: imaginary part) with τ<sub>e</sub> = 2 ms. <b>Right</b>: Phase shift and mean flow velocity for the first 10 echoes for a measurement on anode slurry with τ<sub>e</sub> = 1.8 ms and <span class="html-italic">v</span><sub>mean,vol</sub> = 3.04 cm/s (■: even echoes, <span style="color:red">●</span>: odd echoes). The shaded area indicates the echoes with a signal intensity at noise level.</p> "> Figure 10
<p>Calculated mean flow velocities with a measurement at <span class="html-italic">v</span><sub>mean,vol</sub> = 0 cm/s as a reference (■) and the first two even echoes as a reference (<span style="color:red">●</span>) as a function of the volumetrically measured <span class="html-italic">v</span><sub>mean,vol</sub> for an anode slurry. The correlation line (<b>–</b>) was added as guide to the eyes.</p> "> Figure 11
<p>Normalized signal magnitudes as a function of τ<sub>e</sub>. <b>Left</b>: Measured magnitudes for tap water (■), 0.4% w/w CMC in water (<span style="color:blue">▼</span>), 1% w/w CMC in water (<span style="color:red">●</span>), 40% w/w corn starch in water (<span style="color:lime">●</span>). <b>Right</b>: Calculated reference values for comparison: <span class="html-italic">n</span> = 1 (<b>–</b>), <span class="html-italic">n</span> = 0.7 (<b><span style="color:blue">–</span></b>), <span class="html-italic">n</span> = 0.5 (<b><span style="color:red">–</span></b>), <span class="html-italic">n</span> = 1.5 (<b><span style="color:lime">–</span></b>). Water shows Newtonian behavior. The aqueous CMC solutions have the characteristics of a shear-thinning fluid, whereas corn starch in water shows shear-thickening behavior. The small deviation in the τ<sub>e</sub> axes is a consequence of the value of the effective magnetic field gradient in the experiments and the simulations.</p> "> Figure 12
<p>Magnitudes normalized to a measurement at <span class="html-italic">v</span><sub>mean,vol</sub> = 0 cm/s as a function of τ<sub>e</sub> for tap water (■), anode slurry with 45% w/w solids content (<span style="color:#D0CECE">⬢</span>), 1% w/w CMC in water (<span style="color:red">●</span>) and 30% w/w graphite in water (<span style="color:grey">◆</span>) for <span class="html-italic">v</span><sub>mean,vol</sub> = 0.58 cm/s. The graphite-in-water suspension shows shear thickening, whereas the curve for the anode slurry is located between the curve of CMC in water and graphite in water. Splines were added as guides to the eyes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Background
2.2. Short Description of the NMR Sensor
2.3. Experimental Setup of the Flow Measurements
2.4. Composition of the Samples
2.5. Measurement Parameters
2.6. Data Analysis
3. Results
3.1. Reference Measurements with Established MRI Methods
3.2. Transverse Relaxation at 22 MHz
3.3. Measurement of Flow Velocities by NMR Signal Phase Shifts
3.4. Flow Behavior Index from Signal Magnitudes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grießl, D.; Adam, A.; Huber, K.; Kwade, A. Effect of the slurry mixing process on the structural properties of the anode and the resulting fast-charging performance of the lithium-ion battery cell. J. Electrochem. Soc. 2022, 169, 020531. [Google Scholar] [CrossRef]
- Gallo, A.B.; Simões-Moreira, J.R.; Costa, H.K.M.; Santos, M.M.; Moutinho dos Santos, E. Energy storage in the energy transition context: A technology review. Renew. Sustain. Energy Rev. 2016, 65, 800–822. [Google Scholar] [CrossRef]
- Dreger, H.; Huelsebrock, M.; Froboese, L.; Kwade, A. Method Development for Quality Control of Suspensions for Lithium-Ion Battery Electrodes. Ind. Eng. Chem. Res. 2017, 56, 2466–2474. [Google Scholar] [CrossRef]
- Chinn, S.C.; Cook-Tendulkar, A.; Maxwell, R.; Wheeler, H.; Wilson, M.; Xie, Z.H. Qualification of Automated Low-Field NMR Relaxometry for Quality Control of Polymers in a Production Setting. Polym. Test. 2007, 26, 1015–1024. [Google Scholar] [CrossRef]
- Kern, S.; Wander, L.; Meyer, K.; Guhl, S.; Mukkula, A.R.G.; Holtkamp, M.; Salge, M.; Fleischer, C.; Weber, N.; King, R.; et al. Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals. Anal. Bioanal. Chem. 2019, 411, 3037–3046. [Google Scholar] [CrossRef]
- Matzkanin, G.; Gardner, C. Nuclear magnetic resonance sensors for moisture measurement in roadways. Trans. Res. Rev. 1975, 532, 77–86. [Google Scholar]
- Blümich, B.; Blümler, P.; Eidmann, G.; Guthausen, A.; Haken, R.; Schmitz, U.; Saito, K.; Zimmer, G. The NMR-MOUSE: Construction, excitation, and applications. Magn. Reson. Imaging 1998, 16, 479–484. [Google Scholar] [CrossRef]
- McDonald, P.; Aptaker, P.; Mitchell, J.; Mulheron, M. A unilateral NMR magnet for sub-structure analysis in the built environment: The Surface GARField. J. Magn. Reson. 2007, 185, 1–11. [Google Scholar] [CrossRef]
- Ross, M.M.B.; Wilbur, G.R.; Cano Barrita, P.F.d.J.; Balcom, B.J. A portable, submersible MR sensor—The Proteus magnet. J. Magn. Reson. 2021, 326, 106964. [Google Scholar] [CrossRef]
- Windt, C.W.; Soltner, H.; van Dusschoten, D.; Blümler, P. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF. J. Magn. Reson. 2011, 208, 27–33. [Google Scholar] [CrossRef]
- Hürlimann, M.D. Diffusion and Relaxation Effects in General Stray Field NMR Experiments. J. Magn. Reson. 2001, 148, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ross, M.M.B.; Newling, B.; Balcom, B.J. Non-Newtonian Fluid Velocity Profiles Determined with Simple Magnetic Resonance Spin Echoes. Phys. Rev. Appl. 2021, 16, L021001. [Google Scholar] [CrossRef]
- Guo, J.; Ross, M.M.B.; Newling, B.; Lawrence, M.; Balcom, B.J. Laminar flow characterization using low-field magnetic resonance techniques. Phys. Fluids 2021, 33, 103609. [Google Scholar] [CrossRef]
- Aydin, E.; Makinwa, K.A.A. A Low-Field Portable Nuclear Magnetic Resonance (NMR) Microfluidic Flowmeter. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Virtual, 20–24 June 2021; pp. 1020–1023. [Google Scholar]
- Herold, H.; Hardy, E.H.; Ranft, M.; Wassmer, K.H.; Nestle, N. Online Rheo-TD NMR for analysing batch polymerisation processes. Microporous Mesoporous Mater. 2013, 178, 74–78. [Google Scholar] [CrossRef]
- Rudszuck, T.; Zick, K.; Groß, D.; Nirschl, H.; Guthausen, G. Dedicated NMR sensor to analyze relaxation and diffusion in liquids and its application to characterize lubricants. Magn. Reson. Chem. 2021, 59, 825–834. [Google Scholar] [CrossRef]
- Schmid, E.; Rondeau, S.; Rudszuck, T.; Nirschl, H.; Guthausen, G. Inline NMR via a Dedicated V-Shaped Sensor. Sensors 2023, 23, 2388. [Google Scholar] [CrossRef]
- Schmid, E.; Kontschak, L.; Nirschl, H.; Guthausen, G. NMR in Battery Anode Slurries with a V-Shaped Sensor. Sensors 2024, 24, 3353. [Google Scholar] [CrossRef]
- Rütten, M. Verallgemeinerte Newtonsche Fluide: Thermische und Viskose Strömungseigenschaften; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ostwald, W. Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität. Kolloid-Z. 1929, 47, 176–187. [Google Scholar] [CrossRef]
- McCarthy, K.L.; Kerr, W.L.; Kauten, R.J.; Walton, J.H. Velocity profiles of fluid/particulate mixtures in pipe flow using MRI. J. Food Process Eng. 1997, 20, 165–177. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Meiboom, S.; Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688–691. [Google Scholar] [CrossRef]
- Stejskal, E.O. Use of Spin Echoes in a Pulsed Magnetic-Field Gradient to Study Anisotropic Restricted Diffusion and Flow. J. Chem. Phys. 1965, 43, 3597–3603. [Google Scholar] [CrossRef]
- Pope, J.M. Quantitative NMR Imaging of Flow. Concept Magn. Res. 1993, 5, 281–302. [Google Scholar] [CrossRef]
- Grover, T.; Singer, J.R. NMR Spin-Echo Flow Measurements. J. Appl. Phys. 1971, 42, 938–940. [Google Scholar] [CrossRef]
- Fukuda, K.; Hirai, A. A Pulsed NMR Study on the Flow of Fluid. J. Phys. Soc. Jpn. 1979, 47, 1999–2006. [Google Scholar] [CrossRef]
- Fukushima, E. Nuclear magnetic resonance as a tool to study flow. Annu. Rev. Fluid Mech. 1999, 31, 95–123. [Google Scholar] [CrossRef]
- Pelc, N.J.; Herfkens, R.J.; Shimakawa, A.; Enzmann, D.R. Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 1991, 7, 229–254. [Google Scholar]
- Firmin, D.; Nayler, G.; Kilner, P.; Longmore, D. The application of phase shifts in NMR for flow measurement. Magn. Reson. Med. 1990, 14, 230–241. [Google Scholar] [CrossRef]
- Wymer, D.T.; Patel, K.P.; Burke III, W.F.; Bhatia, V.K. Phase-Contrast MRI: Physics, Techniques, and Clinical Applications. RadioGraphics 2020, 40, 122–140. [Google Scholar] [CrossRef]
- Schork, N.; Schuhmann, S.; Nirschl, H.; Guthausen, G. In situ measurement of deposit layer formation during skim milk filtration by MRI. Magn. Reson. Chem. 2019, 57, 738–748. [Google Scholar] [CrossRef]
- Förster, E.; Nirschl, H.; Guthausen, G. NMR Diffusion and Relaxation for Monitoring of Degradation in Motor Oils. Appl. Magn. Reson. 2017, 48, 51–65. [Google Scholar] [CrossRef]
- Röding, M.; Bernin, D.; Jonasson, J.; Sarkka, A.; Topgaard, D.; Rudemo, M.; Nyden, M. The gamma distribution model for pulsed-field gradient NMR studies of molecular-weight distributions of polymers. J. Magn. Reson. 2012, 222, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Haberzettl, P.; Filipovic, N.; Vrankovic, D.; Willenbacher, N. Processing of Aqueous Graphite–Silicon Oxide Slurries and Its Impact on Rheology, Coating Behavior, Microstructure, and Cell Performance. Batteries 2023, 9, 581. [Google Scholar] [CrossRef]
Sample Name | Composition | Measured with |
---|---|---|
Tap water | Tap water | MRI, V-sensor |
0.4% w/w CMC in water | 0.4% w/w CMC powder in tap water | MRI, V-sensor |
0.8% w/w CMC in water | 0.8% w/w CMC powder in tap water | MRI |
1% w/w CMC in water | 1% w/w CMC powder in tap water | MRI, V-sensor |
40% w/w corn starch in water | 40% w/w corn starch in tap water | V-sensor |
30% w/w graphite in water | 30% w/w graphite powder in tap water | V-sensor |
Diluted anode slurry | 89.6% w/w demineralized water 9.7% w/w graphite 0.39% w/w SBR 0.19% w/w CMC 0.15% w/w CB | MRI |
Anode slurry | 55% w/w demineralized water 41.85% w/w graphite 1.35% w/w SBR 0.795% w/w CMC 0.595% w/w CB | V-sensor |
Parameter | Water, CMC Solutions | Diluted Anode Slurry |
---|---|---|
Echo time τe [ms] | 10 | 2.4 |
Repetition time [ms] | 400 | 400 |
Flip angle [°] | 60 | 60 |
Number of averages [-] | 3 | 4 |
Field of flow [cm/s] | 1 … 15 | 2 … 20 |
Slice thickness [mm] | 2 | 4 |
Image size [-] | 128 × 128 | 128 × 128 |
Parameter | Water, CMC Solutions, Corn Starch Suspension | Anode Slurry, Graphite-in-Water Suspension |
---|---|---|
Echo time τe [ms] | 0.2 … 5.2 | 0.2 … 5.2 |
Number of echoes k [-] | 500 | 150 |
Recycle delay [s] | 10 | 4 |
Receiver gain [dB] | 69 | 72 |
Number of averages [-] | 8 … 16 | 16 … 64 |
Sample | n [-] |
---|---|
Water | 1.0 |
0.4% w/w CMC in water | 1.0 |
0.8% w/w CMC in water | 0.8 |
1% w/w CMC in water | 0.6 |
anode slurry 10.4% w/w | 1.2 |
Sample Name | Transverse Relaxation Rates, Distribution Widths and Fractions |
---|---|
Tap water | R2,mean,eff = 20 s−1 σ = 14 s−1 |
0.4% w/w CMC in water | R2,1 = 36 s−1, R2,2 = 7 s−1 x1 = 0.51, x2 = 0.49 |
1% w/w CMC in water | R2,1 = 37 s−1, R2,2 = 7 s−1 x1 = 0.52, x2 = 0.48 |
Anode slurry | R2,mean,eff = 560 s−1 σ = 540 s−1 |
30% w/w graphite in water | R2,mean,eff = 29 s−1 σ = 18 s−1 |
40% w/w corn starch in water | R2,mean,eff = 83 s−1 σ = 71 s−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, E.; Pertzel, T.O.; Nirschl, H.; Guthausen, G. Characterization of Flow with a V-Shaped NMR Sensor. Sensors 2024, 24, 6163. https://doi.org/10.3390/s24196163
Schmid E, Pertzel TO, Nirschl H, Guthausen G. Characterization of Flow with a V-Shaped NMR Sensor. Sensors. 2024; 24(19):6163. https://doi.org/10.3390/s24196163
Chicago/Turabian StyleSchmid, Eric, Tim Oliver Pertzel, Hermann Nirschl, and Gisela Guthausen. 2024. "Characterization of Flow with a V-Shaped NMR Sensor" Sensors 24, no. 19: 6163. https://doi.org/10.3390/s24196163