Deep-Learning-Based Real-Time Passive Non-Line-of-Sight Imaging for Room-Scale Scenes
<p>A simplified model for passive NLOS imaging.</p> "> Figure 2
<p>(<b>a</b>) The room utilized as the hidden scene; (<b>b</b>) A diffuse reflection image before the preprocessing procedure. The framed area represents the ROI; (<b>c</b>) A diffuse reflection image after the preprocessing procedure; (<b>d</b>) Partial label images from the training dataset and validation dataset.</p> "> Figure 3
<p>(<b>a</b>) The structure of the generator. Each blue box corresponds to a multi-channel feature map and the number of channels is denoted on top of the box; (<b>b</b>) The structure of an inception block; (<b>c</b>) The structure of the discriminator.</p> "> Figure 4
<p>Learning curve of the USEEN model showing the mean square error (MSE) between the reconstructed images and real-shot hidden scenes as a function of epochs.</p> "> Figure 5
<p>Reconstruction result from the validation and test dataset. (<b>a</b>) Partial reconstruction results of the validation dataset; (<b>b</b>) Partial reconstruction results of the test dataset; (<b>c</b>) Robustness to light interference conditions on the diffuse surface.</p> "> Figure 5 Cont.
<p>Reconstruction result from the validation and test dataset. (<b>a</b>) Partial reconstruction results of the validation dataset; (<b>b</b>) Partial reconstruction results of the test dataset; (<b>c</b>) Robustness to light interference conditions on the diffuse surface.</p> "> Figure 6
<p>Reconstruction performance comparison among the DCIGN, the pix2pix, and the USEEN.</p> ">
Abstract
:1. Introduction
2. Diffuse Reflection Loss Analysis
3. Method
3.1. Experimental Setup
3.2. Network Architecture
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirmani, A.; Hutchison, T.; Davis, J.; Raskar, R. Looking around the Corner using Ultrafast Transient Imaging. Int. J. Comput. Vis. 2011, 95, 13–28. [Google Scholar] [CrossRef]
- Li, S.; Deng, M.; Lee, J.; Sinha, A.; Barbastathis, G. Imaging through glass diffusers using densely connected convolutional networks. Optica 2018, 5, 803–813. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, W.; Lu, H.; Barnawi, A. Wireless high-frequency NLOS monitoring system for heart disease combined with hospital and home. Future Gener. Comput. Syst. 2020, 110, 772–780. [Google Scholar] [CrossRef]
- Wu, C.; Hou, H.; Wang, W.; Huang, Q.; Gao, X. TDOA Based Indoor Positioning with NLOS Identification by Machine Learning. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Repasi, E.; Lutzmann, P.; Steinvall, O.; Elmqvist, M.; Gohler, B.; Anstett, G. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations. Appl. Opt. 2009, 48, 5956–5969. [Google Scholar] [CrossRef] [PubMed]
- Velten, A.; Willwacher, T.; Gupta, O.; Veeraraghavan, A.; Bawendi, M.G.; Raskar, R. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 2012, 3, 745. [Google Scholar] [CrossRef]
- O’Toole, M.; Lindell, D.B.; Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 2018, 555, 338–341. [Google Scholar] [CrossRef]
- Batarseh, M.; Sukhov, S.; Shen, Z.; Gemar, H.; Rezvani, R.; Dogariu, A. Passive sensing around the corner using spatial coherence. Nat. Commun. 2018, 9, 3629. [Google Scholar] [CrossRef]
- Faccio, D.; Velten, A.; Wetzstein, G. Non-line-of-sight imaging. Nat. Rev. Phys. 2020, 2, 318–327. [Google Scholar] [CrossRef]
- Lindell, D.B.; Wetzstein, G.; O’Toole, M. Wave-Based Non-Line-of-Sight Imaging using Fast f-k Migration. ACM Trans. Graph. 2019, 38, 1–13. [Google Scholar] [CrossRef]
- Katz, O.; Heidmann, P.; Fink, M.; Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 2014, 8, 784–790. [Google Scholar] [CrossRef]
- Cao, R.Z.; de Goumoens, F.; Blochet, B.; Xu, J.; Yang, C.H. High-resolution non-line-of-sight imaging employing active focusing. Nat. Photonics 2022, 16, 462–468. [Google Scholar] [CrossRef]
- Gao, L.; Chai, Y.; Zibar, D.; Yu, Z. Deep learning in photonics: Introduction. Photonics Res. 2021, 9, DLP1–DLP3. [Google Scholar] [CrossRef]
- Horisaki, R.; Takagi, R.; Tanida, J. Learning-based imaging through scattering media. Opt. Express 2016, 24, 13738–13743. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, K.; Sui, X.; Cao, L. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt. Lett. 2021, 46, 2908–2911. [Google Scholar] [CrossRef] [PubMed]
- Metzler, C.A.; Heide, F.; Rangarajan, P.; Balaji, M.M.; Viswanath, A.; Veeraraghavan, A.; Baraniuk, R.G. Deep-inverse correlography: Towards real-time high-resolution non-line-of-sight imaging. Optica 2020, 7, 63–71. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, E.; Gu, J.; Bai, L.; Han, J. Imaging through unknown scattering media based on physics-informed learning. Photonics Res. 2021, 9, B210–B219. [Google Scholar] [CrossRef]
- Lin, B.; Fan, X.; Guo, Z. Self-attention module in a multi-scale improved U-net (SAM-MIU-net) motivating high-performance polarization scattering imaging. Opt. Express 2023, 31, 3046–3058. [Google Scholar] [CrossRef]
- Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology: A review. Light Sci. Appl. 2022, 11, 39. [Google Scholar] [CrossRef]
- Zheng, S.S.; Liao, M.H.; Wang, F.; He, W.Q.; Peng, X.; Situ, G.H. Non-line-of-sight imaging under white-light illumination: A two-step deep learning approach. Opt. Express 2021, 29, 40091–40105. [Google Scholar] [CrossRef]
- Lin, D.; Hashemi, C.; Leger, J.R. Passive non-line-of-sight imaging using plenoptic information. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2020, 37, 540–551. [Google Scholar] [CrossRef]
- Geng, R.X.; Hu, Y.; Chen, Y. Recent Advances on Non-Line-of-Sight Imaging: Conventional Physical Models, Deep Learning, and New Scenes. APSIPA Trans. Signal Inf. Process. 2021, 11, e1. [Google Scholar] [CrossRef]
- Li, Y.Z.; Xue, Y.J.; Tian, L. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media. Optica 2018, 5, 1181–1190. [Google Scholar] [CrossRef]
- Saunders, C.; Murray-Bruce, J.; Goyal, V.K. Computational periscopy with an ordinary digital camera. Nature 2019, 565, 472–475. [Google Scholar] [CrossRef]
- Kim, J.W.; Cherukara, M.J.; Tripathi, A.; Jiang, Z.; Wang, J. Inversion of coherent surface scattering images via deep learning network. Appl. Phys. Lett. 2021, 119, 191601. [Google Scholar] [CrossRef]
- Wu, H.Z.; Liu, S.P.; Meng, X.F.; Yang, X.L.; Yin, Y.K. Non-line-of-sight imaging based on an untrained deep decoder network. Opt. Lett. 2022, 47, 5056–5059. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the International Workshop on Artificial Neural Networks (Springer, 1995), Torremolinos, Spain, 7–9 June 1995; pp. 195–201. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.H.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III. Volume 9351, pp. 234–241. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544. [Google Scholar]
- Tahmid, M.; Alam, M.S.; Rao, N.; Ashrafi, K.M.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2023 IEEE 9th International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Thiruvananthapuram, India, 25–26 November 2023; pp. 1–5. [Google Scholar] [CrossRef]
- He, J.; Wu, S.; Wei, R.; Zhang, Y. Non-line-of-sight imaging and tracking of moving objects based on deep learning. Opt. Express 2022, 30, 16758–16772. [Google Scholar] [CrossRef]
Network | PSNR (dB) | SSIM | Reconstruction Time (ms) |
---|---|---|---|
USEEN (Ours) | 19.209 | 0.829 | 12.2 |
DCIGN | 15.452 | 0.536 | 3.0 |
Pix2pix | 16.926 | 0.803 | 30.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, Y. Deep-Learning-Based Real-Time Passive Non-Line-of-Sight Imaging for Room-Scale Scenes. Sensors 2024, 24, 6480. https://doi.org/10.3390/s24196480
Li Y, Zhang Y. Deep-Learning-Based Real-Time Passive Non-Line-of-Sight Imaging for Room-Scale Scenes. Sensors. 2024; 24(19):6480. https://doi.org/10.3390/s24196480
Chicago/Turabian StyleLi, Yuzhe, and Yuning Zhang. 2024. "Deep-Learning-Based Real-Time Passive Non-Line-of-Sight Imaging for Room-Scale Scenes" Sensors 24, no. 19: 6480. https://doi.org/10.3390/s24196480
APA StyleLi, Y., & Zhang, Y. (2024). Deep-Learning-Based Real-Time Passive Non-Line-of-Sight Imaging for Room-Scale Scenes. Sensors, 24(19), 6480. https://doi.org/10.3390/s24196480