Farm Monitoring System with Drones and Optical Camera Communication
<p>Conceptual system architecture (Orange arrows: drone trajectory).</p> "> Figure 2
<p>Block diagram of proposed system.</p> "> Figure 3
<p>Perspective transformation to image plane.</p> "> Figure 4
<p>Ground coverage of drone-mounted camera (a: top length, b: bottom length, c: height of trapezoid).</p> "> Figure 5
<p>Concept of trajectory control algorithm.</p> "> Figure 6
<p>Total trajectory length.</p> "> Figure 7
<p>Total travel time.</p> "> Figure 8
<p>Experimental setup.</p> "> Figure 9
<p>Sensor node.</p> "> Figure 10
<p>Sensor node taken from drone.</p> "> Figure 11
<p>Sensor node placement (Red point: sensor node, Orange arrow: drone trajectory).</p> "> Figure 12
<p>Recognition accuracy of the LED panels.</p> "> Figure 13
<p>Bit error rate with threshold of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Smart Agriculture with Drones
2.2. Sensor-Based Monitoring in Agriculture
2.3. Optical Camera Communication (OCC)
3. Proposed Scheme
3.1. Concept
3.2. Variable Definition
3.2.1. Coordination Systems
3.2.2. Variables
3.3. System Model
3.3.1. Coordination Transformation
3.3.2. Ground Coverage
3.3.3. Altitude Limit
3.3.4. Transmission Time
3.3.5. Trajectory Requirement
3.4. Algorithm
3.4.1. Node Clustering
Algorithm 1 Trajectory control algorithm. |
|
3.4.2. Graph Generation
3.4.3. Trajectory Determination
4. Computer Simulation
4.1. Simulation Conditions
4.2. Simulation Results
4.2.1. Total Trajectory Length
4.2.2. Total Travel Time
5. Experimental Results
5.1. Experimental Condition
5.1.1. Overview
5.1.2. Experimental Setup
5.1.3. Coding and Modulation
5.1.4. Demodulation
5.2. Results
5.2.1. Model Confirmation
5.2.2. Light Source Detection
5.2.3. Signal Reception
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, M.S.; Frank, L.; G Philip, R.; Stephen, K.H. Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 2007, 64, 245–252. [Google Scholar]
- Luc, C.; Lionel, D.; Jesper, K. The (evolving) role of agriculture in poverty reduction—An empirical perspective. J. Dev. Econ. 2011, 96, 239–254. [Google Scholar]
- Navulur, S.; Prasad, M.G. Agricultural management through wireless sensors and internet of things. Int. J. Electr. Comput. Eng. 2017, 7, 3492. [Google Scholar] [CrossRef]
- Del Cerro, J.; Cruz Ulloa, C.; Barrientos, A.; de León Rivas, J. Unmanned aerial vehicles in agriculture: A survey. Agronomy 2021, 11, 203. [Google Scholar] [CrossRef]
- Devi, G.; Sowmiya, N.; Yasoda, K.; Muthulakshmi, K.; Kishore, B. Review on Application of Drones for Crop Health Monitoring and Spraying Pesticides and Fertilizer. J. Crit. Rev. 2020, 7, 667–672. [Google Scholar]
- Shubhangi, G.R.; Mrunal, S.T.; Chaitali, V.W.; Manish, D.M. A Review on Agricultural Drone Used in Smart Farming. Int. Res. J. Eng. Technol. 2021, 8, 313–316. [Google Scholar]
- Primicerio, J.; Di Gennaro, S.F.; Fiorillo, E.; Genesio, L.; Lugato, E.; Matese, A.; Vaccari, F.P. A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric. 2012, 13, 517–523. [Google Scholar] [CrossRef]
- Ahirwar, S.; Swarnkar, R.; Bhukya, S.; Namwade, G. Application of Drone in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2500–2505. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Soni, S.K. Implementation of drone technology for farm monitoring and pesticide spraying: A review. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Kurkute, S.; Deore, B.; Kasar, P.; Bhamare, M.; Sahane, M. Drones for smart agriculture: A technical report. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 341–346. [Google Scholar] [CrossRef]
- Nikki, J.S. Drones: The Newest Technology for Precision Agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [Google Scholar]
- Abderahman, R.; Alireza, A.; Karim, R.; Horst, T. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar]
- Pasquale, D.; Luca, D.V.; Luigi, G.; Luigi, I.; Davide, L.; Francesco, P.; Giuseppe, S. A review on the use of drones for precision agriculture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 275, p. 012022. [Google Scholar]
- Spoorthi, S.; Shadaksharappa, B.; Suraj, S.; Manasa, V.K. Freyr drone: Pesticide/fertilizers spraying drone—An agricultural approach. In Proceedings of the 2017 2nd International Conference on Computing and Communications Technologies (ICCCT), Chennai, India, 23–24 February 2017; pp. 252–255. [Google Scholar] [CrossRef]
- Paulina, L.R.; Jaroslav, S.; Adam, D. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens. 2019, 52, 192–201. [Google Scholar]
- Namani, S.; Gonen, B. Smart agriculture based on IoT and cloud computing. In Proceedings of the 2020 3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; pp. 553–556. [Google Scholar]
- Jawad, A.M.; Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Abu-Alshaeer, M.J. Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture. IEEE Access 2019, 7, 139839–139851. [Google Scholar] [CrossRef]
- Goudarzi, S.; Kama, N.; Anisi, M.H.; Zeadally, S.; Mumtaz, S. Data collection using unmanned aerial vehicles for Internet of Things platforms. Comput. Electr. Eng. 2019, 75, 1–15. [Google Scholar] [CrossRef]
- Cicioğlu, M.; Çalhan, A. Smart agriculture with Internet of Things in cornfields. Comput. Electr. Eng. 2021, 90, 106982. [Google Scholar] [CrossRef]
- Moribe, T.; Okada, H.; Kobayashl, K.; Katayama, M. Combination of a wireless sensor network and drone using infrared thermometers for smart agriculture. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–2. [Google Scholar]
- Rajendra, P.S.; Ram, L.R.; Sudhir, K.S. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Ramson, S.R.J.; León-Salas, W.D.; Brecheisen, Z.; Foster, E.J.; Johnston, C.T.; Schulze, D.G.; Filley, T.; Rahimi, R.; Soto, M.J.C.V.; Bolivar, J.A.L.; et al. A Self-Powered, Real-Time, LoRaWAN IoT-Based Soil Health Monitoring System. IEEE Internet Things J. 2021, 8, 9278–9293. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S. A temperature auto-monitoring and frost prevention real time control system based on a Z-BEE networks for the tea farm. In Proceedings of the 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), Kuala Lumpur, Malaysia, 24–27 June 2012; pp. 644–647. [Google Scholar] [CrossRef]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081. [Google Scholar] [CrossRef]
- Valecce, G.; Petruzzi, P.; Strazzella, S.; Grieco, L.A. NB-IoT for Smart Agriculture: Experiments from the Field. In Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic, 29 June–2 July 2020; Volume 1, pp. 71–75. [Google Scholar] [CrossRef]
- Tsai, C.F.; Liang, T.W. Application of IoT Technology in The Simple Micro-farming Environmental Monitoring. In Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018; pp. 170–172. [Google Scholar] [CrossRef]
- Le, N.T.; Hossain, M.A.; Jang, Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017, 53, 95–109. [Google Scholar] [CrossRef]
- Onodera, Y.; Takano, H.; Hisano, D.; Nakayama, Y. Avoiding Inter-Light Sources Interference in Optical Camera Communication. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Moh, K.H.; Chowdhury, M.Z.; Md, S.; Nguyen, V.T.; Jang, Y.M. Performance Analysis and Improvement of Optical Camera Communication. Appl. Sci. 2018, 8, 2527. [Google Scholar] [CrossRef]
- Islim, M.S.; Videv, S.; Safari, M.; Xie, E.; McKendry, J.J.D.; Gu, E.; Dawson, M.D.; Haas, H. The Impact of Solar Irradiance on Visible Light Communications. J. Light. Technol. 2018, 36, 2376–2386. [Google Scholar] [CrossRef]
- Takai, I.; Harada, T.; Andoh, M.; Yasutomi, K.; Kagawa, K.; Kawahito, S. Optical Vehicle-to-Vehicle Communication System Using LED Transmitter and Camera Receiver. IEEE Photonics J. 2014, 6, 1–14. [Google Scholar] [CrossRef]
- Elizabeth, E.; Shivani, T.; Navid, B.H.; Stanislav, V.; Zabih, G.; Stanislav, Z. 400 m rolling-shutter-based optical camera communications link. Opt. Lett. 2020, 45, 1059–1062. [Google Scholar]
- Takano, H.; Nakahara, M.; Suzuoki, K.; Nakayama, Y.; Hisano, D. 300-Meter Long-Range Optical Camera Communication on RGB-LED-Equipped Drone and Object-Detecting Camera. IEEE Access 2022, 10, 55073–55080. [Google Scholar] [CrossRef]
- Li, T.; Onodera, Y.; Hisano, D.; Nakayama, Y. Drone Trajectory Control for Line-of-Sight Optical Camera Communication. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 3808–3813. [Google Scholar] [CrossRef]
- Onodera, Y.; Takano, H.; Hisano, D.; Nakayama, Y. Adaptive N+1 Color Shift Keying for Optical Camera Communication. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Virtual Conference, 27–28 September 2021; pp. 1–5. [Google Scholar]
Variable | Definition |
---|---|
Set of sensor nodes | |
Sensor node identifier in | |
Radius of ith sensor node | |
Position of ith sensor node in global coordinate system | |
Position of camera in global coordinate system | |
Position of ith sensor node in image plane | |
Horizontal resolution of image plane | |
Vertical resolution of image plane | |
Horizontal angle of view | |
Vertical angle of view | |
Elevation angle of camera | |
f | Focal length of camera |
Image sensor size | |
Data rate | |
Spatial multiplicity | |
D | Symbol rate |
Symbol number for CSK | |
Maximum data size | |
Transmission time | |
a | Top length of camera coverage trapezoid |
b | Bottom length of camera coverage trapezoid |
c | Height of camera coverage trapezoid |
h | Altitude of receiver camera |
Ground coverage of receiver camera |
Parameter | Value |
---|---|
Altitude of receiver camera h | 5 m |
Speed of drone | 3 m/s |
Horizontal angle of view | |
Vertical angle of view | |
Elevation angle of camera |
[Deg] | a | b | c |
---|---|---|---|
0 | |||
30 | |||
45 |
Batch | Img-Size | Weight | Epochs | Loss | mAP_: |
---|---|---|---|---|---|
16 | 640 | YOLOv5l | 300 | ||
16 | 320 | YOLOv5l | 300 | ||
8 | 640 | YOLOv5l | 300 | ||
8 | 320 | YOLOv5l | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondo, S.; Yoshimoto, N.; Nakayama, Y. Farm Monitoring System with Drones and Optical Camera Communication. Sensors 2024, 24, 6146. https://doi.org/10.3390/s24186146
Kondo S, Yoshimoto N, Nakayama Y. Farm Monitoring System with Drones and Optical Camera Communication. Sensors. 2024; 24(18):6146. https://doi.org/10.3390/s24186146
Chicago/Turabian StyleKondo, Shinnosuke, Naoto Yoshimoto, and Yu Nakayama. 2024. "Farm Monitoring System with Drones and Optical Camera Communication" Sensors 24, no. 18: 6146. https://doi.org/10.3390/s24186146
APA StyleKondo, S., Yoshimoto, N., & Nakayama, Y. (2024). Farm Monitoring System with Drones and Optical Camera Communication. Sensors, 24(18), 6146. https://doi.org/10.3390/s24186146