Underwater Acoustic Orthogonal Frequency-Division Multiplexing Communication Using Deep Neural Network-Based Receiver: River Trial Results
<p>Structure of a neuron.</p> "> Figure 2
<p>ReLU and leaky ReLU [<a href="#B26-sensors-24-05995" class="html-bibr">26</a>].</p> "> Figure 3
<p>NN training process.</p> "> Figure 4
<p>Architecture of an LSTM layer.</p> "> Figure 5
<p>Architecture of the CNN-based receiver.</p> "> Figure 6
<p>Shelly Jetty, Western Australia.</p> "> Figure 7
<p>Frame structure.</p> "> Figure 8
<p>Block diagram of the transmitter.</p> "> Figure 9
<p>Block diagram of the receiver.</p> "> Figure 10
<p>Architecture of the LSTM-based receiver.</p> "> Figure 11
<p>River trial setup.</p> "> Figure 12
<p>BER performance of the proposed NN-based receiver.</p> "> Figure 13
<p>Tank setup.</p> "> Figure 14
<p>Indoor tank channel profile.</p> "> Figure 15
<p>River trial 1 channel profile.</p> "> Figure 16
<p>BER performance of the NN-based receivers in river trial 1.</p> "> Figure 17
<p>River trial 2 channel profile.</p> "> Figure 18
<p>BER performance of the NN-based receivers in river trial 2 with 1000 packets for testing, 4 layers and 200 epochs.</p> "> Figure 19
<p>BER performance of the NN-based receivers with 2000 packets for training, 2000 packets for testing in river trial 2.</p> ">
Abstract
:1. Introduction
2. Literature Review
2.1. Review of Conventional UA OFDM Communication Systems
2.2. Review of DL-Based UA Communications
2.3. Review of DL-Based Receiver for UA OFDM Communications
3. System Model
3.1. Background of DNN
3.1.1. MLP
3.1.2. LSTM
3.1.3. CNN
3.2. Training the NNs
4. Proposed DNN-Based UA OFDM Receiver
4.1. Transmitter
4.2. Receiver
4.3. Proposed DNN Architecture
4.4. Training the Proposed NNs
5. Experiment Setup
6. Performance Results
6.1. Simulation Result
6.2. Indoor Tank Results
6.3. River Trial Results
6.3.1. River Trial 1
6.3.2. River Trial 2
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schirripa Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater optical wireless communications: Overview. Sensors 2020, 20, 2261. [Google Scholar] [CrossRef] [PubMed]
- De-Rango, F.; Veltri, F.; Fazio, P. A multipath fading channel model for underwater shallow acoustic communications. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 3811–3815. [Google Scholar]
- Chen, P.; Rong, Y.; Nordholm, S.; He, Z. An underwater acoustic OFDM system based on NI compactDAQ and LabVIEW. IEEE Syst. J. 2019, 13, 3858–3868. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Mehmood, R.M.; Du, R.; Lee, H.J. Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG Sensors. IEEE Access 2017, 5, 14797–14806. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.; Luo, Z.; Cai, Y. An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access 2017, 5, 24417–24425. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Wang, D. A deep ensemble learning method for monaural speech separation. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 967–977. [Google Scholar] [CrossRef]
- Montavon, G.; Samek, W.; Klaus-Robert, M. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P. Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 2009, 10, 1–40. [Google Scholar]
- Zhang, Y.; Li, J.; Zakharov, Y.; Li, X.; Li, J. Deep learning based underwater acoustic OFDM communications. Appl. Acoust. 2019, 154, 53–58. [Google Scholar] [CrossRef]
- Barua, S.; Rong, Y.; Nordholm, S.; Chen, P. Real-time adaptive modulation schemes for underwater acoustic OFDM communication. Sensors 2023, 22, 3436. [Google Scholar] [CrossRef]
- Chen, P.; Rong, Y.; Nordholm, S.; He, Z.; Duncan, A.J. Joint channel estimation and impulsive noise mitigation in underwater acoustic OFDM communication systems. IEEE Trans. Wirel. Commun. 2017, 16, 6165–6178. [Google Scholar] [CrossRef]
- El-Mahallawy, M.; TagEldien, A.S.; Elagooz, S. Performance enhancement of underwater acoustic OFDM communication systems. Wirel. Pers. Commun. 2019, 108, 2047–2057. [Google Scholar] [CrossRef]
- Ali, M.; Jayakody, D.N.K.; Chursin, Y.A.; Dmitry, S. Recent advances and future directions on underwater wireless communications. Arch. Comput. Methods Eng. 2020, 27, 1379–1412. [Google Scholar] [CrossRef]
- Zuberi, H.H.; Liu, S.; Bilal, M.; Alharbi, A.; Jaffar, A.; Mohsan, S.A.H.; Miyajan, A.; Khan, M.A. Deep-neural-network-based receiver design for downlink non-orthogonal multiple-access underwater acoustic communication. J. Mar. Sci. Eng. 2023, 11, 2184. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Wang, B.; Liu, Y.; Bai, W.; Shen, X. Deep learning-based signal detection for underwater acoustic OTFS communication. J. Mar. Sci. Eng. 2022, 10, 1920. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X.; Leng, C.; Wang, J.; Mao, S. Modulation recognition of underwater acoustic signals using deep hybrid neural networks. IEEE Trans. Wirel. Commun. 2022, 21, 5977–5988. [Google Scholar] [CrossRef]
- Onasami, O.; Adesina, D.; Qian, L. Underwater acoustic communication channel modeling using deep learning. In Proceedings of the 15th International Conference on Underwater Networks and Systems, Shenzhen, China, 22–24 November 2021. [Google Scholar]
- Zhang, Y.; Wang, H.; Li, C.; Chen, X.; Meriaudeau, F. On the performance of deep neural network aided channel estimation for underwater acoustic OFDM communications. Ocean. Eng. 2022, 259, 111518. [Google Scholar] [CrossRef]
- Yonglin, Z.; Li, C.; Wang, H.; Wang, J.; Yang, F.; Meriaudeau, F. Deep learning aided OFDM receiver for underwater acoustic communications. Appl. Acoust. 2022, 187, 108515. [Google Scholar]
- Hassan, S.; Chen, P.; Rong, Y.; Chan, K.Y. Doppler shift compensation using an LSTM-based deep neural network in underwater acoustic communication systems. In Proceedings of the OCEANS 2023, Limerick, Ireland, 5–8 June 2023; pp. 1–7. [Google Scholar]
- Waki, T.; Hara, Y.; Ebihara, T.; Wakatsuki, N.; Mizutani, K. Measurement of delay and doppler spreads in underwater acoustic channel with line-of-sight and non-line-of-sight environments. J. Signal Process. 2023, 27, 179–188. [Google Scholar] [CrossRef]
- Reza, B. Impulsive Noise Detection and Mitigation in Communication Systems; Kansas State University: Manhattan, KS, USA, 2019. [Google Scholar]
- Bhardwaj, A.; Di, W.; Wei, J. Deep Learning Essentials: Your Hands-on Guide to the Fundamentals of Deep Learning and Neural Network Modeling; Packt Publishing Ltd.: Birmingham, UK, 2018; pp. 10–15. [Google Scholar]
- Jiang, R.; Wang, X.; Cao, S.; Zhao, J.; Li, X. Deep neural networks for channel estimation in underwater acoustic OFDM systems. IEEE Access 2019, 7, 23579–23594. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; Volume 30, p. 3. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning @ONLINE. 2016. Available online: http://www.deeplearningbook.org (accessed on 12 June 2024).
- Wang, Y.; Zhang, H.; Sang, Z.; Xu, L.; Cao, C.; Gulliver, T.A. Modulation classification of underwater communication with deep learning network. Comput. Intell. Neurosci. 2019, 2019, 8039632. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Xia, Z.; Liu, Y.; Cai, T.; Liu, T.; Zhan, Y. ALSTM: Adaptive LSTM for durative sequential data. In Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial Intelligence, Volos, Greece, 5–7 November 2018; pp. 151–157. [Google Scholar]
- Marius-Constantin, P.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer perceptron and neural networks. Wseas Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Klaus, G.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar]
- Hassan, S.; Chen, P.; Rong, Y.; Chan, K.Y. Underwater acoustic OFDM receiver using a regression-based deep neural network. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–6. [Google Scholar]
- Hassan, S.; Chen, P.; Rong, Y.; Chan, K.Y. Benefits of neural network-based receivers in underwater acoustic communication systems. In Proceedings of the OCEANS 2024, Singapore, 14–18 April 2024. [Google Scholar]
Network | Layers | Neurons | Performance Evaluation (For 200 Epochs) | |||
---|---|---|---|---|---|---|
Simulation | Tank Trial | River Trial 1 | River Trial 2 | |||
MLP | Sequence input layer Fully connected layer ReLU Fully connected layer Regression layer | 40 80 4 | 2 | 1 | 2 | 1 |
LSTM | Sequence input layer LSTM layer Fully connected layer Regression layer | 40 80 4 | 1 | 2 | 1 | 2 |
CNN | Image input layer Convolution layer ReLU Fully connected layer Regression layer | 20 × 2 × 1 20 × 2 × 8 4 | Not evaluated | 3 | 3 | Worse than conventional LS method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thenginthody Hassan, S.; Chen, P.; Rong, Y.; Chan, K.Y. Underwater Acoustic Orthogonal Frequency-Division Multiplexing Communication Using Deep Neural Network-Based Receiver: River Trial Results. Sensors 2024, 24, 5995. https://doi.org/10.3390/s24185995
Thenginthody Hassan S, Chen P, Rong Y, Chan KY. Underwater Acoustic Orthogonal Frequency-Division Multiplexing Communication Using Deep Neural Network-Based Receiver: River Trial Results. Sensors. 2024; 24(18):5995. https://doi.org/10.3390/s24185995
Chicago/Turabian StyleThenginthody Hassan, Sabna, Peng Chen, Yue Rong, and Kit Yan Chan. 2024. "Underwater Acoustic Orthogonal Frequency-Division Multiplexing Communication Using Deep Neural Network-Based Receiver: River Trial Results" Sensors 24, no. 18: 5995. https://doi.org/10.3390/s24185995
APA StyleThenginthody Hassan, S., Chen, P., Rong, Y., & Chan, K. Y. (2024). Underwater Acoustic Orthogonal Frequency-Division Multiplexing Communication Using Deep Neural Network-Based Receiver: River Trial Results. Sensors, 24(18), 5995. https://doi.org/10.3390/s24185995