Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles
<p>Representative illustration of Valor inertial measurement unit placement. Ten Valor Velcro straps are used to secure each Valor IMU to the subjects’ ankles, shanks, thighs, waist, trunk, and upper arms, as seen marked by the red circles.</p> "> Figure 2
<p>Left and right ankle, knee, and hip joint angles are represented by the average curves between Vicon motion capture (V3D), shown in red, and the Valor inertial measurement unit (Valor), shown in blue. Data from a representative subject performing the vertical jump task.</p> "> Figure 3
<p>Left and right shoulder joint abduction and flexion angles are represented by the average curves between Vicon motion capture (V3D) shown in red, and the Valor inertial measurement unit (Valor), shown in blue. Data from a representative subject performing the vertical jump task.</p> "> Figure 3 Cont.
<p>Left and right shoulder joint abduction and flexion angles are represented by the average curves between Vicon motion capture (V3D) shown in red, and the Valor inertial measurement unit (Valor), shown in blue. Data from a representative subject performing the vertical jump task.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Demographics
2.2. Optical Motion Capture System Instrumentation
2.3. Valor IMU Instrumentation
2.4. Procedure
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Root-Mean-Squared-Error
3.2. Interclass Correlation Coefficient
3.3. Paired T-Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caldas, R.; Fadel, T.; Buarque, F.; Markert, B. Adaptive predictive systems applied to gait analysis: A systematic review. Gait Posture 2020, 77, 75–82. [Google Scholar] [CrossRef]
- van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef] [PubMed]
- Abhayasinghe, N.; Murray, I.; Sharif Bidabadi, S. Validation of thigh angle estimation using inertial measurement unit data against optical motion capture systems. Sensors 2019, 19, 596. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, S.; Nijmeijer, E.; Bragonzoni, L.; Dingshoff, E.; Gokeler, A.; Benjaminse, A. Comparing lab and field agility kinematics in young talented female football players: Implications for ACL injury prevention. Eur. J. Sport Sci. 2023, 23, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Räisänen, A.M.; Clermont, C.A.; Ferber, R. Is this the real life, or is this just laboratory? A scoping review of IMU-based running gait analysis. Sensors 2022, 22, 1722. [Google Scholar] [CrossRef]
- Napier, C.; Esculier, J.F.; Hunt, M.A. Gait retraining: Out of the lab and onto the streets with the benefit of wearables. Br. J. Sports Med. 2017, 51, 1642–1643. [Google Scholar] [CrossRef] [PubMed]
- Papi, E.; Murtagh, G.M.; McGregor, A.H. Wearable technologies in osteoarthritis: A qualitative study of clinicians’ preferences. BMJ Open 2016, 6, e009544. [Google Scholar] [CrossRef]
- O’Reilly, M.; Caulfield, B.; Ward, T.; Johnston, W.; Doherty, C. Wearable inertial sensor systems for lower limb exercise detection and evaluation: A systematic review. Sports Med. 2018, 48, 1221–1246. [Google Scholar] [CrossRef]
- Wang, Q.; Markopoulos, P.; Yu, B.; Chen, W.; Timmermans, A. Interactive wearable systems for upper body rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 20. [Google Scholar] [CrossRef]
- Felius, R.A.W.; Geerars, M.; Bruijn, S.M.; van Dieën, J.H.; Wouda, N.C.; Punt, M. Reliability of IMU-based gait assessment in clinical stroke rehabilitation. Sensors 2022, 22, 908. [Google Scholar] [CrossRef]
- Timmermans, A.A.A.; Seelen, H.A.M.; Geers, R.P.J.; Saini, P.K.; Winter, S.; Vrugt, J.T.; Kingma, H. Sensor-Based Arm Skill Training in Chronic Stroke Patients: Results on Treatment Outcome, Patient Motivation, and System Usability. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Fischer, E.; Tunca, C.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. How we found our IMU: Guidelines to IMU selection and a comparison of seven IMUs for pervasive healthcare applications. Sensors 2020, 20, 4090. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.; Duthie, G.; Robertson, S.; Hopkins, W.; Ball, K. Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. J. Biomech. 2018, 73, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Alonge, F.; Cucco, E.; D’Ippolito, F.; Pulizzotto, A. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Sensors 2014, 14, 8430–8446. [Google Scholar] [CrossRef]
- Papi, E.; Spulber, I.; Kotti, M.; Georgiou, P.; McGregor, A.H. Smart sensing system for combined activity classification and estimation of knee range of motion. IEEE Sens. J. 2015, 15, 5535–5544. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Muller, A.; Larue, C.; Plamondon, A. Validation of a low-cost inertial motion capture system for whole-body motion analysis. J. Biomech. 2020, 99, 109520. [Google Scholar] [CrossRef]
- Nijmeijer, E.M.; Heuvelmans, P.; Bolt, R.; Gokeler, A.; Otten, E.; Benjaminse, A. Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. J. Biomech. 2023, 154, 111637. [Google Scholar] [CrossRef]
- Rekant, J.; Rothenberger, S. April Chambers, Inertial measurement unit-based motion capture to replace camera-based systems for assessing gait in healthy young adults: Proceed with caution. Meas. Sens. 2022, 23, 100396. [Google Scholar] [CrossRef]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.-S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Jamnik, V.K.; Bredin, S.S.D.; Gledhill, N.; on behalf of the PAR-Q+ Collaboration. The Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and Electronic Physical Activity Readiness Medical Examination (ePARmed-X+). Health Fit. J. Can. 2011, 4, 3–23. [Google Scholar]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; p. 273. [Google Scholar]
- Roetenberg, D.; Baten, C.T.M.; Veltink, P.H. Estimating Body Segment Orientation by Applying Inertial and Magnetic Sensing Near Ferromagnetic Materials. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhou, Z. A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 295–302. [Google Scholar] [PubMed]
- Schall, M.C., Jr.; Fethke, N.B.; Chen, H.; Oyama, S.; Douphrate, D.I. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies. Ergonomics 2016, 59, 591–602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, J.M.; Kollock, R.O. The Reliability of Three-Dimensional Inertial Measurement Units in Capturing Lower-Body Joint Kinematics during Single-Leg Landing Tasks. Int. J. Exerc. Sci. 2022, 15, 1306–1316. [Google Scholar] [PubMed] [PubMed Central]
- Cho, Y.S.; Jang, S.H.; Cho, J.S.; Kim, M.J.; Lee, H.D.; Lee, S.Y.; Moon, S.B. Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems. Ann. Rehabil. Med. 2018, 42, 872–883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
RMSE | Left Ankle Angle | Right Ankle Angle | Left Knee Angle | Right Knee Angle | Left Hip Angle | Right Hip Angle |
---|---|---|---|---|---|---|
Bilateral Squat | 7.52 | 8.04 | 9.31 | 11.57 | 7.55 | 9.22 |
Deadlift | 5.12 | 5.3 | 7.43 | 8.47 | 13.22 | 13.2 |
Vertical Jump | 9.64 | 10.99 | 12.47 | 10.87 | 8.62 | 9.42 |
Left Limb Single Leg Squat | 9.45 | 3.3 | 5.99 | 4.83 | 6.09 | 6.99 |
Right Limb Single Leg Squat | 4.49 | 8.9 | 6.23 | 8.53 | 5.93 | 6.73 |
Mean | 7.24 | 7.31 | 8.29 | 8.85 | 8.28 | 9.11 |
RMSE | Left Shoulder Abduction | Right Shoulder Abduction | Left Shoulder Flexion | Right Shoulder Flexion |
---|---|---|---|---|
Left Shoulder Abduction | 8.97 | 1.89 | 12.46 | 3.94 |
Right Shoulder Abduction | 2.56 | 8.60 | 3.71 | 8.14 |
Deadlift | x | x | 14.26 | 16.62 |
Mean | 5.77 | 5.20 | 10.14 | 9.57 |
ICC3k | Left Ankle Angle | Right Ankle Angle | Left Knee Angle | Right Knee Angle | Left Hip Angle | Right Hip Angle |
---|---|---|---|---|---|---|
Bilateral Squat | 0.77 [0.70, 0.83] | 0.93 [0.90, 0.94] | 0.90 [0.87, 0.92] | 0.87 [0.83, 0.90] | 0.90 [0.87, 0.92] | 0.71 [0.62, 0.78] |
Deadlift | 0.89 [0.87, 0.91] | 0.90 [0.88, 0.92] | 0.79 [0.73, 0.83] | 0.80 [0.75, 0.84] | 0.89 [0.87, 0.91] | 0.81 [0.76, 0.84] |
Vertical Jump | 0.98 [0.96, 0.98] | 0.97 [0.95, 0.98] | 0.93 [0.88, 0.95] | 0.88 [0.81, 0.93] | 0.89 [0.82, 0.93] | 0.72 [0.56, 0.82] |
Left Limb Single Leg Squat | 0.76 [0.63, 0.85] | 0.95 [0.92, 0.97] | 0.94 [0.90, 0.96] | 0.80 [0.67, 0.88] | 0.93 [0.89, 0.95] | 0.95 [0.93, 0.97] |
Right Limb Single Leg Squat | 0.91 [0.86, 0.94] | 0.76 [0.62, 0.84] | 0.85 [0.76, 0.91] | 0.88 [0.81, 0.93] | 0.95 [0.92, 0.97] | 0.81 [0.70, 0.88] |
ICC3k | Left Shoulder Abduction | Right Shoulder Abduction | Left Shoulder Flexion | Right Shoulder Flexion |
---|---|---|---|---|
Left Shoulder Abduction | 0.87 [0.80, 0.92] | 0.99 [0.98, 0.99] | 0.11 [−0.39, 0.43] | 0.30 [−0.1, 0.55] |
Right Shoulder Abduction | 0.98 [0.97, 0.99] | 0.84 [0.75, 0.90] | x | 0.06 [−0.48, 0.40] |
Deadlift | x | x | 0.57 [0.47, 0.65] | 0.84 [0.80, 0.87] |
Joint Angle | t-Statistic | p-Value (α < 0.05) |
---|---|---|
Left Ankle Angle | −24.33 | 7.27 × 10−44 |
Right Ankle Angle | −27.78 | 7.71 × 10−49 |
Left Knee Angle | −18.05 | 2.20 × 10−33 |
Right Knee Angle | −8.12 | 6.80 × 10−13 |
Left Hip Angle | −8.49 | 3.19 × 10−13 |
Right Hip Angle | −7.22 | 1.09 × 10−10 |
Left Shoulder Abduction | −6.35 | 8.45 × 10−8 |
Right Shoulder Abduction | −7.28 | 4.42 × 10−9 |
Left Shoulder Flexion | −10.21 | 5.79 × 10−15 |
Right Shoulder Flexion | −10.26 | 4.83 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, J.; Parikh, D.; Tate, V.; Siddicky, S.F.; Hsiao, H.-Y. Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles. Sensors 2024, 24, 5833. https://doi.org/10.3390/s24175833
Smith J, Parikh D, Tate V, Siddicky SF, Hsiao H-Y. Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles. Sensors. 2024; 24(17):5833. https://doi.org/10.3390/s24175833
Chicago/Turabian StyleSmith, Jacob, Dhyey Parikh, Vincent Tate, Safeer Farrukh Siddicky, and Hao-Yuan Hsiao. 2024. "Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles" Sensors 24, no. 17: 5833. https://doi.org/10.3390/s24175833
APA StyleSmith, J., Parikh, D., Tate, V., Siddicky, S. F., & Hsiao, H.-Y. (2024). Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles. Sensors, 24(17), 5833. https://doi.org/10.3390/s24175833