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Abstract: The authentication of wireless devices through physical layer attributes has attracted a fair
amount of attention recently. Recent work in this area has examined various features extracted from
the wireless signal to either identify a uniqueness in the channel between the transmitter–receiver
pair or more robustly identify certain transmitter behaviors unique to certain devices originating
from imperfect hardware manufacturing processes. In particular, the carrier frequency offset (CFO),
induced due to the local oscillator mismatch between the transmitter and receiver pair, has exhibited
good detection capabilities in stationary and low-mobility transmission scenarios. It is still unclear,
however, how the CFO detection capability would hold up in more dynamic time-varying channels
where there is a higher mobility. This paper experimentally demonstrates the identification accuracy
of CFO for wireless devices in time-varying channels. To this end, a software-defined radio (SDR)
testbed is deployed to collect CFO values in real environments, where real transmission and reception
are conducted in a vehicular setup. The collected CFO values are used to train machine-learning
(ML) classifiers to be used for device identification. While CFO exhibits good detection performance
(97% accuracy) for low-mobility scenarios, it is found that higher mobility (35 miles/h) degrades
(72% accuracy) the effectiveness of CFO in distinguishing between legitimate and non-legitimate
transmitters. This is due to the impact of the time-varying channel on the quality of the exchanged
pilot signals used for CFO detection at the receivers.

Keywords: carrier frequency offset (CFO); machine learning (ML); orthogonal frequency-division
multiplexing (OFDM); PHY-authentication; software-defined radio (SDR)

1. Introduction

The seamless connection offered by wireless technology is envisioned to cover wider
domains, where the physical and digital worlds can merge. Such integration will provide
new possibilities and applications where human-to-machine and machine-to-machine
interactions will deliver more efficient and sustainable experiences. This, however, neces-
sitates advancements in security methods to ensure reliability, especially with the open
and broadcast nature of wireless channel, where transmissions from communicating par-
ties are more exposed to eavesdropping. While legacy security methods offered by the
top layers of the protocol stack attempt to provide a data CIA triad (confidentiality, in-
tegrity, and availability), nonetheless, they were initially devised with assumptions of
high computational power availability for the communicating parties. This, however, is
not always the case, especially with the proliferation of low-power wireless devices with
limited resources. Physical layer security (PLS), on the other hand, exploits physical layer
attributes to provide an additional level of data security. PLS is envisioned to either act as a
standalone security layer for low-power devices that cannot afford to implement legacy
security approaches, or it can be incorporated as an additional security layer alongside
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legacy approaches [1]. Various research lines have looked closely at PLS to provide the
CIA triad [2–4]. The first line has devised PHY-encryption methods to maintain reliable
communication at authorized receivers, while equivocating data recovery at unauthorized
receivers by, for instance, making received signals noisy or contaminated only for unau-
thorized parties [2]. The second line has exploited shared randomness of the wireless
channel (e.g., the reciprocal channel impulse response (CIR)) between legitimate parties to
extract symmetric secret keys. The privacy of such extracted keys is based on the premise
that the CIR is spatially decorrelated for unauthorized parties located half of the signal
wavelength apart from authorized ones, ending up with dissimilar extracted keys [3]. The
third line, which is the focus of this work, has exploited PHY-layer features to provide
PHY-authentication. This is achieved through extracting unique identifiers, termed radio
frequency fingerprints (RFFs), to distinguish between different transmitters [4]. RFF fea-
tures can be extracted from received wireless signals to either define the uniqueness in the
common channel between the transmitter-and-receiver pair [5], or to find certain unique
hardware behaviors that can be exploited to identify a specific transmitter [6]. The latter
has been found to be more robust, as it is hardware-based and exhibits better stability as
opposed to channel-based methods that can be impacted by dynamic channel behaviors.
With imperfect hardware manufacturing processes, it is almost impossible to fine-tune
transceiver components (such as local oscillators (LO)) to exhibit similar performances for
different transceivers. This creates intrinsic behaviors that can uniquely identify wireless
devices. LO mismatch, for instance, in a specific transmitter-and-receiver pair induces a
carrier frequency offset (CFO) that is different from other transceiver pairs. From a PLS
perspective, this CFO is desirable and can be exploited to differentiate between different
transmitters [6]. Since CFO estimation is an indigenous process that has always been an
essential part of the receiver block chain, no extra processing is required for its extraction,
which makes it an attractive hardware-specific RFF feature for PHY-authentication. CFO
has been utilized, for instance, to detect rogue WiFi transmission for smartphones [7]. In [8],
frequency and phase differences were extracted from the QPSK constellation to identify
Four Zigbee devices for a USRP2 receiver. The work in [9] conducted a study of 93 Wi-Fi
devices with 13 different models. Besides the CFO, sampling frequency offset, transmitter
turn on/off transients, and scrambling seed features were utilized for device classification.
In addition, the work in [10] used the CFO to correct IQ signals, before using them to train
CNN classifiers, where a spectrogram-based analysis was conducted to extract the received
signal time–frequency characteristics of 20 LoRA devices with a detection accuracy of 97.6%.
While the works in [7–11] showed great effectiveness in identifying wireless transmitters
with CFO; nonetheless, only stationary transmission scenarios were examined. The work
in [6] investigated CFO performance in time-varying mobile channels, where a Kalman
filter was adopted to refine estimated time-variant CFO values before directly using them
for device identification. Nonetheless, the CFO values were simulated as an autoregressive
random process rather than being extracted from real-world transmission in a mobility
environment. In our previous work [12], CFO values were collected in a moderate mobility
scenario, which showed a detection performance of 99% (with 0.4% false alarm rate) for
walking speed and 98% (0.6%) for a 10 miles/h driving speed. Nonetheless, with higher
speed scenarios, it is still unclear whether CFO would exhibit the stability to be used for
PHY-authentication. Furthermore, while LO mismatch is a major and desired contributor
to CFO, there are other detrimental factors that can impact estimated CFO values at the
receiver, such as the Doppler effect (induced by motion) and time-varying channels [13].
The Doppler effect can be predictable, as its only source is motion. The time-varying
channel factor, however, is stochastic and unpredictable, which can affect the pilot symbols
(incorporated in the preambles of transmitted signals) used for CFO estimation. This in-
duces instability in the estimated CFO values, degrading their quality as an RFF source for
PHY-authentication. Doppler shift and time-varying channel effects are coupled together
when detecting CFO at the receiver. While outside the scope of our current work, there are
methods that can adopted to resolve such coupling. For instance, the work in [14] devised
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a unified framework for joint channel and target (physical) parameter estimation, which is
based on canonical polyadic decomposition (CPD). Such CPD characterization allows for
the estimation of the angle of arrival/departure (AoA/AoD), time delay, and Doppler shift
in a separate manner. It uses an iterative estimation (optimizing the underlying parameters
in a sequential manner) method to address the coupling between AoD and Doppler shift
parameters. Such insight can be used to resolve the coupling between the channel taps and
the Doppler effect when estimating the CFO. In [15], channel estimation was improved by
dividing the estimation process into two separate stages: the AoA/AoD estimation stage,
and the channel tap estimation stage. The rationale was that AOA/AoD vary much more
slowly than the channel taps. This observation can be exploited to make the estimation
process more efficient and accurate, as the AOA/AoD estimated in the first stage can be
used to improve the estimation of the channel taps in the second stage. Such a rationale
can also be used to improve the accuracy of CFO estimation, where the Doppler effect can
be estimated first and then utilized to improve the estimation of the channel taps.

In this work, we investigate the performance of CFO for PHY-authentication in time-
varying channels. The contributions of this work can summarized as following:

• A software-defined radio (SDR) platform is implemented to extract CFO values in
a vehicular setup with mobility. A custom implementation is added to the OFDM
transceiver to extract CFO values from pilot signals exchanged between the transmitter
and receiver. This allows for the investigation of CFO values in realistic scenarios,
instead of relying on simulation generated values as in previous studies.

• Higher mobility scenarios are explored to investigate the validity of CFO as a radio-
frequency fingerprint for PHY-authentication when the channel is more dynamic.

• Machine learning (ML) classifiers are adopted to be trained and tested on the extracted
CFO values for PHY-authentication. Different from conventional approaches that
rely on model-based statistical signal processing for classification, which are built
with assumptions and designed for inference about the relationships between random
variables to estimate one variable from another observation variable, ML approaches
are data driven and can adapt to various scenarios with mild assumptions about the
environments studied.

The rest of this paper is organized as follows: section two presents the system model,
section three presents the experimental setup and results, and finally the conclusions are
presented in section four.

2. System Model

The system model is illustrated in Figure 1, where a legitimate transmitter, Alice, is
sending messages to a legitimate receiver, Bob, over the wireless broadcast channel. At the
same time, there is a non-legitimate transmitter, Eve, who is capable of impersonating Alice
by replaying her transmission. Conventionally, Bob would resort to upper layer protocols
to validate Alice’s transmission. Nonetheless, with PLS methods, the premise is rather to
rely on RFF for authentication. Here, Bob relies on the CFO as a hardware fingerprint to
distinguish between Alice’s and Eve’s transmissions. If Bob can establish an extracted CFO
from a signal S(t) as Alice’s identity, he can later extract CFO from future transmissions
S(t + T) to verify whether the transmission has originated from Alice. This is based on the
premise that the CFO extracted from one transmitter should exhibit small variances and, as
such, any abrupt changes in the estimated CFO can be attributed to a spoofing behavior, as
it could be originated from different transmitter hardware, i.e., Eve. In other words,

Alice → Bob : S(t + T) ≡ S(t) (1a)

Eve → Bob : S(t + T) ̸≡ S(t) (1b)

While the assumption in Equation (1) is true for CFO values induced by hardware LO
mismatches, there are other factors such as the Doppler effect and time-varying channel that
could negatively contribute to the CFO extracted in mobility scenarios. As such, to account
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for these factors, we conducted experiments to extract CFO values at high speeds from
incoming OFDM bursts by adopting an IEEE 802.11a/g/p transceiver [16]. Each OFDM
burst, as depicted in Figure 2, contains training sequences known to the transmitter and
receiver. These sequences are incorporated in three different fields; namely, short training
(ST) preamble, long training (LT) preamble, and pilot subcarriers, which are, respectively,
used to estimate the coarse CFO (cCFO), fine CFO (fCFO), and residual CFO (rCFO) [17]:

εST =
ϑ

2 × 16π fc
∠
( NST −1−16

∑
n=0

S∗
ST ,n SST ,n+16

)
(2a)

εLT =
ϑ

2 × 64π fc
∠
( 64−1

∑
n=0

S∗
LT ,n SLT ,n+64

)
(2b)

εPS =
ϑ

2π fc
∠
(

∑
n=−21,−7,7,21

Sℓ,n Q∗
n

)
(2c)

Non-legitimate 

Legitimate

Alice

Eve

Bob

Figure 1. The system model where Alice and Bob are, respectively, the legitimate transmitter and
receiver, while Eve is a spoofing transmitter impersonating Alice.
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Figure 2. The CFO estimation and detection scheme, the top part depicts the OFDM burst which
includes the ST field, LT field, and the pilot subcarriers used for CFO estimation. The first stage
involves the cCFO, fCFO, and rCFO estimation from the OFDM burst. The second stage illustrates
how the three extracted features are utilized for the ML classifiers training/testing.

For the cCFO estimation in Equation (2a), a 10 times repeating sequence of 16 complex
(I/Q) samples in the ST field are utilized. Where SST ,n is the nth complex sample; NST is the
ST sequence length (i.e., 160 samples); ϑ is the sampling rate; and fc is the carrier frequency.
SST ,n should equal SST ,n+16 due to ST sequence periodicity, and the product of SST ,n
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complex conjugate and SST ,n+16 should yield a real number. This means when there is the
presence of a CFO, a phase difference ∠(.) accumulated over NST samples will arise. The es-
timated cCFO (i.e., εST ) is used to correct the LT sequence, i.e., SLT ,n = SLT ,n e−j2πnεST fc/ϑ;
n = 32, 34, . . . , 159. Following LT sequence correction, the L0 and L1 in the LT field are
utilized for fCFO (εLT ) estimation in Equation (2b). Where SLT ,n is the nth complex sample.
L1/2, L0, and L1 make up 160 samples in total. L1/2 encompasses 32 samples and is used as
a guard interval. L0 and L1, on the other hand, are identical and each contains 64 complex
samples. Finally, the frequency offset not compensated through cCFO and fCFO corrections
is captured through the rCFO, which is estimated in Equation (2c) with four pilot subcar-
riers in each OFDM symbol following the preamble fields. Starting at the SIGNAL field,
ℓ = 1, 2, . . . is the OFDM symbol index; Qn, n ∈ {±21,±7}, are the corresponding chan-
nel gains estimated earlier through the LT sequence. Here, each OFDM symbol contains
64 subcarriers with only 52 utilized, while for the remaining 12 null subcarriers, one is used
as a DC subcarrier to suppress LO leakages and 11 are used as guard intervals to minimize
inter-symbol interference (ISI). Out of the 52 subcarriers, only 48 are used to carry the data
payload, and the remaining four (index: ±7, ±21) encompass pilots for rCFO estimation.

The estimated CFO values in Equation (2) are used as RFF features, which comprise the
first stage of the detection scheme in Figure 2. This was realized with an SDR testbed that
consisted of a GNURadio software implementation of OFDM-based transceiver (complying
with IEEE 802.11a/g/p recommendations [16]), Figure 3, and USRP B210 hardware from
Ettus research, as well as HackRF hardware. GNURadio enables one to develop and deploy
real-world radio systems. It is a modular (flowgraph oriented) framework that supports
DSP development in C++ and Python. It includes libraries of DSP blocks that can be
readily incorporated (such as FFT block) in more complex DSP applications. In addition, it
allows modification and/or development of custom blocks. The UHD block is the interface
between the USRP hardware and the flowgraph, which downstreams the received RF
signals as a complex baseband IQ sample-stream to the flowgraph. The flexibility offered
by GNURadio allowed us to incorporate our custom logic on top of the OFDM equalizer
block to extract the cCFO, fCFO, and rCFO values estimated from the received OFDM
bursts detected in the flowgraph blocks preceding the equalizer block.
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Figure 3. The GNURadio flowgraph of the OFDM receiver. The OFDM frame equalizer block (in
dashed green line) includes our added code to extract cCFO, fCFO, and rCFO values estimated from
received OFDM bursts detected in the flowgraph blocks preceding the equalizer block.
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The extracted features were later used to train/test ML classifiers in the second stage
of the detection scheme in Figure 2 . Each ML classifier was implemented as a function that
maps the three features Equations (2a)–(2c) into two unique classes, namely: Alice and Eve.

Hn = F (ε(k)ST , ε(k)LT , ε(k)PS ) (3)

where Hn is the transmitter identifier, n ∈ {Alice, Eve}, F (.) is a function that maps
the features Equations (2a)–(2c) into Hn, which can be any of many classification func-
tions trained on K samples (not to be confused with the IQ samples of OFDM symbols).
Out of various ML classifiers [18], we adopted four different classifiers: logistic regres-
sion (LR), k-nearest neighbors (KNN), decision tree (DT), and support vector machine
(SVM). They were realized with a Python-based library that provided support for vari-
ous supervised/unsupervised ML algorithms [19]. While a conventional approach for
communications systems research is to rely on model-based statistical signal processing
for classification. Such statistical models are built with assumptions and designed for
inference about the relationships between random variables, i.e., to estimate one variable
from another variable observation. Nonetheless, recent advancements in computation have
opened the door for researchers to adopt ML classifiers, which are data-driven and can
adapt to various scenarios with mild assumptions about the environments studied [20].

3. Experiments and Results

To evaluate the effect of a time-varying channel on CFO stability, real CFO mea-
surements were collected in an outdoor environment on the road near the college of the
engineering campus at the university of Toledo, as depicted in Figure 4. We used Dell
Precision 5520 laptops (Intel Core i7-7820HQ CPU, 32 GB RAM), running Ubuntu 18.04
OS. Two USRPs (B210 model) from the same vendor were configured to be the transmitters
Alice and Eve, and one HackRF was configured as the receiver. Using transmitters from the
same vendor allowed us to investigate the worst-case scenario, which is when there is no
significant difference between the estimated CFO values from Alice and Eve, undermining
CFO’s uniqueness for identification. The experiment operation parameters are summarized
in Table 1. To demonstrate a replay attack, both USRPs were configured to send the exact
same messages at the same transmission rate (2 bursts/s). While the CFO is meant to
capture the frequency drift due to the hardware mismatch between the transmitter and
receiver, the Doppler effect caused by motion is added to the estimated CFO values at the
receiver, which should also be captured and corrected with the help of the CFO estimation
process. To focus on the CFO caused by the hardware mismatch, all devices and antennas
were mounted on the same vehicle (rather than having two vehicles one trailing the other)
to ensure that signals from both transmitters Alice and Eve would encounter the same
Doppler effect, as they would be traveling at the exact same speed. This ensured the
frequency offset originating from the Doppler effect would be the same for the Alice–Bob
and Eve–Bob channels, eliminating its effect on the classification bias of the ML classifiers.
This helped us to steer our analysis towards the effect of the time-varying channel that
disturbed the pilot tones used for CFO estimation.

Alice’s and Eve’s antennas were mounted on the rear end of the vehicle, 2 inches
apart; while Bob’s antenna was mounted on the front end of the vehicle, with a distance of
15.5 feet from Alice and Eve. The vehicle was driven at an average speed of 35 miles/h for
the most part, and 2221 OFDM bursts were detected from each transmitter (4442 in total for
two transmitters) and their corresponding CFO estimates (i.e, cCFO, fCFO, and rCFO) were
extracted. The first 100 samples of the collected cCFO, fCFO, and rCFO are depicted in
Figure 5 for stationary and mobility scenarios. It can be clearly observed that when there
was no mobility present, the cCFO, fCFO, and rCFO values from Alice–Bob and Eve–Bob
could be linearly separated. This is due to the fact that the only source of frequency offset
was the hardware discrepancies between Alice’s and Eve’s transmitters. However, when
there was mobility present, the detected cCFO, fCFO, and rCFO values started to overlap,
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especially at higher speeds (i.e., 35 miles/h), which was caused by the time-varying channel
effect on the estimated cCFO, fCFO, and rCFO values at Bob.

Figure 4. The experiment setup: Alice’s and Eve’s antennas are mounted on the rear end of the
vehicle, 2 inches apart; while Bob’s antenna is mounted on the front end of the vehicle with a distance
of 15.5 feet from Alice and Eve.

Figure 5. A snippet of the first 100 samples of the collected cCFO, fCFO, and rCFO values for
stationary and mobility scenarios.

The collected cCFO, fCFO, and rCFO were used to train/test four ML classifiers:
LR, KNN, DT, and SVM. For each classifier, a κ-fold cross-validation was performed by
randomly splitting the entire dataset (i.e., 4442 samples) into κ subsets (κ − 1 subsets were
employed for training and one for testing). This offered an unbiased classifier evaluation
by ensuring each data sample was utilized for training and testing through κ iterations,
demonstrating whether discrepancies in the data samples impacted the classifier perfor-
mance. It is important to mention there is no rule of thumb to decide the exact number for
the samples size needed for training an ML classifier; nonetheless, one factor that can be
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considered is the number of features (dependable variables) used. Since, in our case, the
used features were only three, 2221 OFDM bursts from each transmitter should suffice.

Table 1. Experiment operational parameters.

Parameter Quantity

Frequency 5.86 GHZ
Bandwidth 20 MHz
Transmission Mode Half Duplex
USRP1 RF board A: TX/RX port Alice’s Antenna
USRP2 RF board A: TX/RX port Eve’s Antenna
HackRF RF board: TX/RX port Bob’s Antenna
Antenna Type ECOM9-5500 (9 dBi dipole)
TX Power 20 dBm
RX Gain 29 dB (i.e., 92% of maximum gain)
Channel Estimator Least Squares
Burst Rate 2 burst/s

The prediction capability of each classifier was evaluated in terms of the receiver
operating characteristic (ROC) curve with its corresponding area under the curve (AUC),
as well as a confusion matrix. An ROC curve depicts the probabilities of the true positives
PTP against false positives PFP:

PTP = P(ĤAlice|HAlice) (4a)

PFP = P(ĤEve|HAlice) (4b)

By setting κ = 10, we obtained 10 ROC curves for each classifier with their corresponding
AUCs, as depicted in Figure 6. A better classier performance is indicated when the ROC
curve approaches the left-top corner (i.e., PTP ≈ 1 and PFP ≈ 0), accumulating larger AUC.
It can be observed that the average AUC µ (and the standard deviation σ) for LR, KNN, DT,
and SVM, respectively, were 0.8 (0.029), 0.74 (0.031), 0.64 (0.026), and 0.79 (0.04). This shows
a performance degradation for the higher mobility scenario compared to cases when the
car was driven at an average speed of 10 miles/h and the walking speed in our previous
study [12], as summarized in Table 2.

After each classifier has been adaptively optimized with a threshold to yield the desired
trade-off between true positive rate (TPR)/false positive rate (FPR), a confusion matrix
could be generated to collect the classification records for all classifiers, as summarized in
Table 3. For κ = 10, each classifier was evaluated with 10 confusion matrices, averaged
(standard deviation also found) to give the final matrix. Each matrix contains the records
of the true positives (TP : Alice|Alice), true negatives (TN : Eve|Eve), false positives
(FP : Eve|Alice), and false negatives (FN : Alice|Eve). This allowed calculating the TPR
and FPR as follows: TPR = (TP)/(TP + FN) and FPR = (FP)/(FP + TN). Accordingly,
we found the pairs of (TPR, FPR) for LR, KNN, DT, and SVM, respectively, which were
(0.72, 0.27), (0.67, 0.31), (0.64, 0.36), and (0.71, 0.25). This shows a degradation in the CFO
detection performance when used in higher mobility scenarios compared to lower mobility
scenarios, as summarized in Table 3. This is due to the fact that in higher speed mobility
scenarios, the channel becomes more dynamic and affects the values of the training pilots,
which reduces the accuracy of the CFO estimation at the receiver. This shows that CFO
is highly impacted by a time-varying channel, which compromises its validity for PHY-
authentication. It can also be observed that the LR classifier exhibited better performance
compared to the other three classifiers used. This can be attributed to the limited size of
the dataset used, with a small number of features (only three features). The underlying
linearity assumption between the features and the outcome variable also contributed to
LR’s robustness to noise and outliers, making it less likely to overfit compared to more
complex models, as it can generalize better. While the SVM was tuned with a linear kernel
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function, it is sensitive to hyper-parameter selection when dealing with smaller datasets
with a limited number of features.
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Figure 6. ROC curves with their corresponding area under the curve (AUC) for four ML classifiers:
LR, KNN, DT, and SVM trained and tested on cCFO, fCFO, and rCFO values extracted at 35 mph
speed. For κ = 10 cross-validation, 10 ROC curves for each classifier with their corresponding AUCs
are obtained. A higher classier performance is indicated when an ROC curve approaches the left-top
corner (i.e., PTP ≈ 1 and PFP ≈ 0), accumulating larger AUC.

Table 2. Average area under the curve (AUC) for four ML classifiers: LR, KNN, DT, and SVM.

Speed Avg. AUC (Std. Dev.) LR KNN DT SVM

35 mph
µ (σ)

0.8 (0.029) 0.74 (0.031) 0.64 (0.026) 0.79 (0.04)
10 mph [12] 0.97 (0.007) 0.97(0.012) 0.91 (0.031) 0.98(0.006)
Walking [12] 0.99 (0.004) 0.99 (0.009) 0.96 (0.018) 0.99(0.004)
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Table 3. Confusion matrices for four ML classifiers: LR, KNN, DT, and SVM found for mobility
scenarios of 35 miles/h, 10 miles/h, and walking speed.

LR (TPR = 0.72, FPR = 0.27) KNN (TPR = 0.67, FPR = 0.31) DT (TPR = 0.64, FPR = 0.36) SVM (TPR = 0.71, FPR = 0.25)
Alice Eve Alice Eve Alice Eve Alice Eve

Alice 162 (6) 60 (5) Alice 155 (5) 67 (5) Alice 141 (7) 81 (7) Alice 168 (6) 54 (6)

35
.m

ph

Eve 62 (10) 160 (10) Eve 74 (11) 148 (11) Eve 79 (7) 143 (6) Eve 67 (12) 155 (12)
LR (TPR = 0.92, FPR = 0.07) KNN (TPR = 0.92, FPR = 0.07) DT (TPR = 0.89, FPR = 0.08) SVM (TPR = 0.93, FPR = 0.06)

Alice Eve Alice Eve Alice Eve Alice Eve
Alice 250 (4) 20 (4) Alice 251 (4) 19 (4) Alice 274 (5) 23 (5) Alice 254 (5) 16 (5)

10
.m

ph
Eve 23 (15) 247 (15) Eve 22 (15) 248 (15) Eve 28 (20) 242 (20) Eve 19 (15) 251 (15)
LR (TPR = 0.97, FPR = 0.02) KNN (TPR = 0.96, FPR = 0.03) DT (TPR = 0.95, FPR = 0.04) SVM (TPR = 0.97, FPR = 0.02)

Alice Eve Alice Eve Alice Eve Alice Eve
Alice 195 (4) 5 (4) Alice 194 (4) 6 (4) Alice 192 (6) 8 (6) Alice 195 (4) 5 (4)

W
al

ki
ng

Eve 6 (5) 194 (5) Eve 7 (5) 193 (5) Eve 9 (6) 191 (6) Eve 6 (5) 194 (5)

4. Conclusions

The performance of carrier frequency offset (CFO) for PHY-authentication was ex-
amined in a time-varying channel. While CFO is commonly considered as a solid RFF
feature due to its dependence on hardware, its stability can be impacted by mobility. The
pilot symbols used for CFO estimation are affected by the time-varying channel, which in
turn impacts the accuracy of the estimated CFO. This decreases its stability and reliability
as an RFF feature for wireless device identification. This was experimentally observed
by deploying a software-defined radio (SDR) testbed to collect CFO values in a real en-
vironment, where real transmission and reception were conducted in a vehicular setup
with mobility. CFO values were extracted at three levels from incoming OFDM bursts
to capture the unique hardware behavior of different transmitters, namely coarse CFO,
fine CFO, and residual CFO. The captured CFO values were used to train and test four
classification models, namely logistic regression (LR), k-nearest neighbors (KNN), deci-
sion tree (DT), and support vector machine (SVM). The results showed that with higher
mobility (35 miles/h speed), the identification performance degraded drastically. It was
found that that the true positive rate (TPR) and false positive rate (FPR) for the four clas-
sifiers adopted were LR (TPR = 0.72, FPR = 0.27), KNN (TPR = 0.67, FPR = 0.31), DT
(TPR = 0.64, FPR = 0.36), and SVM (TPR = 0.71, FPR = 0.25). This shows a drastic degra-
dation in performance when compared to the 10 mile/h speed LR (TPR = 0.92, FPR = 0.07),
KNN (TPR = 0.92, FPR = 0.07), DT (TPR = 0.89, FPR = 0.08), SVM (TPR = 0.93,
FPR = 0.06); and walking speed LR (TPR = 0.97, FPR = 0.02), KNN (TPR = 0.96,
FPR = 0.03), DT (TPR = 0.95, FPR = 0.04), SVM (TPR = 0.97, FPR = 0.02).
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