Data-Driven Strain Sensor Design Based on a Knowledge Graph Framework
<p>Illustration of a KGAI architecture developed with three procedures for (<b>a</b>) knowledge graph building of strain sensors, (<b>b</b>) representation learning of the knowledge graph (feature engineering), (<b>c</b>) knowledge reasoning of sensor design (performance prediction, sensor design query, and exploration).</p> "> Figure 2
<p>The evaluation of the KGAI method. (<b>a</b>,<b>b</b>) Values of MRR and Hit@n metrics of knowledge graph construction. (<b>c</b>,<b>d</b>) Cluster atlas of different combinations of representation methods (improved method with considering the correlation between functional materials and hole method without considering the correlation between functional materials) via unsupervised learning after dimensionality reduction. (<b>e</b>) The heat map of functional materials and flexible matrix. The colors scale with the values of the cosine similarity between embeddings. The dark color of the squares means a strong correlation. (<b>f</b>) The value of false positive (value = 1, wrong prediction in database) and true negative of designs (value = 3, undetected designs in database).</p> "> Figure 3
<p>(<b>a</b>) The design process of the whole method. (<b>b</b>) The indicators (Precision, Accuracy, and Recall) of three methods for classification tasks by 10-fold cross-validation. (<b>c</b>) The indicators of the MLP method in ten different test datasets. (<b>d</b>,<b>e</b>) The predicted labels and true labels of train and test samples (one and four misclassified samples, respectively).</p> "> Figure 4
<p>(<b>a</b>) The indicators of the XGB and MLP method for performance prediction. (<b>b</b>) The mean absolute error of 10-fold cross-validation of the test dataset. (<b>c</b>) The model prediction value and the true value for train samples. The line represents a prediction formula for the strain range. (<b>d</b>) The model prediction and the true value of test samples for strain range. (<b>e</b>,<b>f</b>) Evaluations of the design prediction. (<b>e</b>) The error prediction performance of the traditional method (only using the text feature without the correlation) and our KGAI method (using the graph feature containing the text feature and relationship feature) in the training process. (<b>f</b>) The error prediction performance of the traditional method and our KGAI method on the test dataset.</p> "> Figure 5
<p>The trend of flexible substrate (PDMS) in the knowledge graph. (<b>a</b>) The sensor performance of strain range and gauge factor. (<b>b</b>) The trend of gauge factor under different structures of PDMS.</p> "> Figure 6
<p>Photographs of the film showing excellent flexibility when (<b>a</b>) twisted, (<b>b</b>) bent, and (<b>c</b>,<b>d</b>) stretched. (<b>e</b>,<b>f</b>) Top views of the composite film under the SEM observation with different scales (5 μm and 1 μm).</p> "> Figure 7
<p>Main metrics of the strain sensor. (<b>a</b>) The stress under different strain ranges. (<b>b</b>) The relative resistance–strain variation curves and stress–strain curves of strain sensors. (<b>c</b>) The durability of the sensor. The insert pictures are the subgraph of the cycle (800–806) and response/recovery times of the sensor. (<b>d</b>,<b>e</b>) The three cycles of the stretching process with a tensile rate of 40 mm/min and 20 mm/min, respectively. (<b>f</b>) The cycle stability of relative resistances under different strains (35%, 45%, and 80%).</p> "> Figure 8
<p>Applications of the strain sensor to detect human motions. (<b>a</b>,<b>b</b>) Motions of swallowing and speaking. (<b>c</b>) The resistance changes with the bending of the hand. (<b>d</b>) The resistance changes of knee motions (standing and sitting state).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Knowledge Graph Building of the Strain Sensors
2.2. Representation Learning
2.3. Knowledge Reasoning
2.4. Fabrication of a Designed Strain Sensor
2.5. Characterization
3. Results and Discussion
3.1. The Effect of the KGAI Representation Method
3.2. Navigation Model of Prediction
3.3. Entity Prediction
3.4. Automatic Strain Sensor Design
3.5. Characteristics of the Designed Strain Sensor
3.6. Demonstration of a Human Action Monitoring Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.; Guo, C.; Li, W.; Liu, H.; Mu, Q. A super-elastic wearable strain sensor based on PU/CNTs yarns for human-motion detection. ACS Appl. Mater. Interfaces 2024, 50, 102017. [Google Scholar] [CrossRef]
- Dong, H.; Sun, J.; Liu, X. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 2022, 13, 15504–15516. [Google Scholar] [CrossRef]
- Guo, H.; Chu, Z.; Fu, L.; Lv, Y.; Liu, X.; Fan, X.; Zhang, W. Thickness-induced gradient micro-wrinkle PDMS/MXene/rGO wearable strain sensor with high sensitivity and stretchability for human motion detection. Chem. Eng. J. 2024, 495, 153684. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, H.; Huang, M.; Su, M.; Ma, Y.; Shi, M.; Liu, H. Construction of “island-bridge” microstructured conductive coating for enhanced impedance response of organohydrogel strain sensor. Chem. Eng. J. 2024, 496, 153752. [Google Scholar] [CrossRef]
- Tan, P.; Wang, H.; Xiao, F. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358. [Google Scholar] [CrossRef]
- Lin, T.; Li, S.; Hu, Y. Ultrastretchable and adhesive agarose/Ti3C2Tx-crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohydr. Polym. 2022, 290, 119506. [Google Scholar] [CrossRef]
- Xue, S.S.; Tang, Z.H.; Zhu, W.B. Stretchable and ultrasensitive strain sensor from carbon nanotube-based composite with significantly enhanced electrical and sensing properties by tailoring segregated conductive networks. Compos. Commun. 2022, 29, 100987. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, H.; Duan, Z.; Huang, Q.; Zhang, M.; Zhang, H. High sensitivity, wide range and waterproof strain sensor with inner surface sensing layer for motion detection and gesture reconstruction. Sens. Actuators A 2024, 369, 115202. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C.; Li, C.; Yu, Z.; Shen, C.; Yang, Y.; Zhang, Y. A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor. Compos. Part B Eng. 2022, 230, 109528. [Google Scholar] [CrossRef]
- Luo, L.Y.R.; Park, H.; Jin, S.W. High sensitivity and wide sensing range flexible strain sensors based on pre-stretching and layer-by-layer self-assembly. Adv. Funct. Mater. 2024, 49, 104385. [Google Scholar] [CrossRef]
- Mei, S.; Xu, B.; Wan, J.; Chen, J. Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on centrifugal spinning method for strain sensors. Sensors 2024, 24, 4026. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; He, H. Integrating high-performance flexible wires with strain sensors for wearable human motion detection. Sensors 2024, 24, 4795. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jiang, Y.; Duan, Z.; Wu, Y.; Yuan, Z.; Zhang, M.; Tai, H. Electrochemical self-powered strain sensor for static and dynamic strain detections. Nano Energy 2023, 118, 108997. [Google Scholar] [CrossRef]
- Lei, M.; Feng, K.; Ding, S.; Wang, M.; Dai, Z.; Liu, R.; Gao, Y.; Zhou, Y.; Xu, Q.; Zhou, B. Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode. ACS Nano 2022, 16, 12620–12634. [Google Scholar] [CrossRef]
- Dai, Z.; Ding, S.; Lei, M.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B. A superhydrophobic and anti-corrosion strain sensor for robust underwater applications. J. Mater. Chem. A 2021, 9, 15282–15293. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Li, Q.; Tao, X. Recognizing and predicting muscular fatigue of biceps brachii in motion with novel fabric strain sensors based on machine learning. Biomed. Signal Process. Control 2024, 96, 106647. [Google Scholar] [CrossRef]
- Lee, J.; Jin, J. A novel method to design and evaluate artificial neural network for thin film thickness measurement traceable to the length standard. Sci. Rep. 2022, 12, 2212. [Google Scholar] [CrossRef]
- Ravenscroft, D.; Prattis, I.; Kandukuri, T.; Samad, Y.A.; Mallia, G.; Occhipinti, L.G. Machine learning methods for automatic silent speech recognition using a wearable graphene strain gauge sensor. Sensors 2022, 22, 299. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; He, P.; Zhao, W.; Zeng, X.; He, J.; Chen, Y.; Yang, J. Machine learning-enabled intelligent gesture recognition and communication system using printed strain sensors. ACS Appl. Mater. Interfaces 2023, 15, 51360–51369. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, D.; Wang, D.; Luan, H.; Chen, X.; Yan, W. In situ polymerized MXene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition. ACS Appl. Mater. Interfaces 2023, 15, 5811–5821. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, T.; Xu, Y.; Bai, Y.; Yin, L.; Li, G.; Huang, Y. All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. npj Flex. Electron. 2021, 5, 20. [Google Scholar] [CrossRef]
- Yang, H.; Ding, S.; Wang, J. Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat. Commun. 2024, 15, 1636. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, J.; Lim, K.Z. Automatic strain sensor design via active learning and data augmentation for soft machines. Nat. Mach. Intell. 2022, 4, 84–94. [Google Scholar] [CrossRef]
- Chatterjee, A.; Nardi, C.; Oberije, C. Knowledge graphs for COVID-19: An exploratory review of the current landscape. J. Pers. Med. 2021, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Zheng, S.; Liu, Y. Automating materials exploration with a semantic knowledge graph for Li-ion battery cathodes. Adv. Funct. Mater. 2022, 32, 2201437. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A. Translating embeddings for modeling multi-relational data. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013; Volume 26. [Google Scholar]
- Yang, B.; Yih, W.; He, X. Embedding entities and relations for learning and inference in knowledge bases. arXiv 2014, arXiv:1412.6575. [Google Scholar] [CrossRef]
- Nickel, M.; Rosasco, L.; Poggio, T. Holographic embeddings of knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar] [CrossRef]
- Tian, X.; Chan, K.; Hua, T. Wearable strain sensors enabled by integrating one-dimensional polydopamine-enhanced graphene/polyurethane sensing fibers into textile structures. J. Mater. Sci. 2020, 55, 17266–17283. [Google Scholar] [CrossRef]
- Uzabakiriho, P.C.; Wang, M.; Wang, K. High-strength and extensible electrospun yarn for wearable electronics. ACS Appl. Mater. Interfaces 2022, 14, 46068–46076. [Google Scholar] [CrossRef]
- Tang, J.; Wu, Y.; Ma, S. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos. Part B Eng. 2022, 232, 109605. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Zhang, Q.; Cai, G.; Xu, A.; Yan, S. Highly Stretchable and Durable Electrospinning Polyurethane Nanofiber Composite Yarn for Electronic Devices. Fibers Polym. 2022, 23, 352–359. [Google Scholar] [CrossRef]
- Yang, K.; Yin, F.; Xia, D. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019, 11, 9949–9957. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Chang, X.; Jiang, Y.; Wang, D.; Tang, C.; Gao, Y. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. J. Mater. Chem. C 2020, 8, 2074–2085. [Google Scholar] [CrossRef]
- Wu, G.; Yang, Z.; Zhang, Z. High-performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. Electrochim. Acta 2021, 395, 139141. [Google Scholar] [CrossRef]
- Souri, H.; Bhattacharyya, D. Highly sensitive, stretchable, and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C 2018, 6, 10524–10531. [Google Scholar] [CrossRef]
- Niu, B.; Hua, T.; Hu, H. A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. J. Mater. Chem. C 2019, 7, 14651–14663. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Zhang, Y.; Li, A. Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit. J. Mater. Sci. Mater. Electron. 2020, 31, 17233–17248. [Google Scholar] [CrossRef]
- Bi, S.; Hou, L.; Lu, Y. An integrated wearable strain, temperature, and humidity sensor for multifunctional monitoring. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106504. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Luo, M. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J.M.; et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fiber framework for flexible strain sensor. J. Colloid Interface Sci. 2021, 584, 1–10. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Wu, Y.; Peng, J.; Xu, Y.; Li, H.; He, H.; Tai, H. A Finger Motion Monitoring Glove for Hand Rehabilitation Training and Assessment Based on Gesture Recognition. IEEE Sens. J. 2023, 23, 13789–13796. [Google Scholar] [CrossRef]
- Zeng, Z.; Hao, B.; Li, D. Large-scale production of wearable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106520. [Google Scholar] [CrossRef]
- Xu, B.; Ye, F.; Chen, R. A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram. Int. 2022, 7, 48. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Li, C. Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Appl. Surf. Sci. 2021, 566, 150705. [Google Scholar] [CrossRef]
- Chen, Q.; Xiang, D.; Wang, L. Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing. Compos. Part A Appl. Sci. Manuf. 2018, 112, 186–196. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, K.; Liu, Y. Modified MXene-doped conductive organosilicon elastomer with high stretchability, toughness, and self-healability for strain sensors. Compos. Struct. 2022, 282, 115071. [Google Scholar] [CrossRef]
- Huang, T.; He, P.; Wang, R. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732. [Google Scholar] [CrossRef]
- Bu, Y.; Shen, T.; Yang, W.; Yang, S.; Zhao, Y.; Liu, H.; Shen, C. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 2021, 66, 1849–1857. [Google Scholar] [CrossRef]
- Wu, X.; Han, Y.; Zhang, X.; Lu, C. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces. 2016, 8, 9936–9945. [Google Scholar] [CrossRef]
- Akhtar, I.; Chang, S.-H. Highly aligned carbon nanotubes and their sensor applications. Nanoscale. 2020, 12, 21447–21458. [Google Scholar] [CrossRef]
- Om, J.; Heo, J.S.; Kim, M. Highly sensitive textile-based strain sensors using poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate/silver nanowire-coated nylon threads with poly-L-lysine surface modification. RSC Adv. 2017, 7, 53373–53378. [Google Scholar] [CrossRef]
- Qin, R.; Hu, M.; Li, X.; Yan, L.; Wu, C.; Liu, J.; Huang, W. A highly sensitive piezoresistive sensor based on MXenes and polyvinyl butyral with a wide detection limit and low power consumption. Nanoscale 2020, 12, 17715–17724. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jiang, N.; Su, J.; Yin, Q.; Zhang, Y.; Liu, Z.; Liu, Z. A bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 2017, 27, 1702134. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Yang, Q.; Zhou, Q.; Hui, L.; Liu, Z.; Ding, D. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydr. Polym. 2022, 275, 118697. [Google Scholar] [CrossRef]
- Wang, S.L.; Xu, X.; Han, Z.; Li, H.; Wang, Q.; Yao, B. Highly stretchable liquid-metal based strain sensor with high sensitivity for human activity monitoring. Mater. Lett. 2022, 308, 131277. [Google Scholar] [CrossRef]
- Soomro, A.M.; Khalid, M.A.U.; Shah, I.; wan Kim, S.; Kim, Y.S.; Choi, K.H. Highly stable soft strain sensor based on Gly-KCl filled sinusoidal fluidic channel for wearable and water-proof robotic applications. Smart Mater. Struct. 2020, 29, 025011. [Google Scholar] [CrossRef]
- Wu, L.; Xu, C.; Fan, M.; Tang, P.; Zhang, R.; Yang, S.; Bin, Y. Lotus root structure-inspired Ti₃C₂-MXene-based flexible and wearable strain sensor with ultra-high sensitivity and wide sensing range. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106702. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Dong, X. Stretchable Ti₃C₂Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano. 2018, 12, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chen, Y.; Li, Y.; Zhang, Y.; Zhang, J.; Huang, L. A flexible strain sensor based on the porous structure of a carbon black/carbon nanotube conducting network for human motion detection. Sensors 2020, 20, 1154. [Google Scholar] [CrossRef]
- Tan, C.; Dong, Z.; Li, Y.; Zhao, H.; Huang, X.; Zhou, Z.; Sun, B. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 2020, 11, 3530. [Google Scholar] [CrossRef]
Code: Graph Query Implemented to Access Results |
---|
Query rules: Match (v:matrix{name: “PDMS”})\WHERE v. matrix.name == “PDMS”\ RETURN v; |
Results = graph. run(match_str) |
Input | Verification | |
---|---|---|
Flexible substrate: yarn | Gauge factor:50 Strain range: 90% | Reference [38] |
Functional materials: rGO | ||
Method: dip-coating | ||
Flexible substrate: cotton | Gauge factor: 4 Strain range: 11.6% | Reference [39] |
Functional materials: rGO | ||
Method: dip-coating |
Input | Verification | |
---|---|---|
Functional material: carbon nanotubes (CNTs) | Substrate: Flax fabric | Reference [40] |
Gauge factor: 1.24 | ||
Strain range: 120% | ||
Substrate: Polyaniline | Functional material: Silver nanowires | Reference [41] |
Gauge factor: 1 | ||
Strain range: 500% | ||
Strain range: 240% |
Ref. | Main Materials | Strain Range | Sensitivity | Repeatability | Response/Recovery Times | Limit Detection |
---|---|---|---|---|---|---|
[1] | CNTs ink/PU | 350% | 2.7 | 1000 | ~ | ~ |
[6] | CNTs/CNF/PDMS/TPU | 217.5% | 12.7 | 800 | ~ | ~ |
[7] | Silver fillers/LM ink | 170% | ~ | 5000 | ||
[8] | CNTs/latex tube | 200% | 91.1 | 4000 | 290 ms/310 ms | 0.1% |
[15] | CB/PDMS | 250% | 12 | 1000 | ~ | ~ |
[16] | CNTs/CB/PDMS | 80% | 7.7 | 10,000 | 100 ms/110 ms | 0.04% |
[20] | CNTs/LiCl/elastic core-spun yarn | 100% | 1.35 | 1000 | 300 ms | ~ |
[30] | Graphene/PU | 160% | 86.86 | 100 | ~ | ~ |
[31] | LM/TPU | 548% | 6 | 1000 | ~ | ~ |
[32] | CNTs/TPU | 140% | ~ | 1250 | ~ | ~ |
[33] | PAN/graphene/TPU | 2% | 1700 | 300 | ~ | ~ |
[37] | CNTs@carbon black/PDMS | 80% | 7.7 | 10,000 | 2% | |
[40] | CNTs/fabric | 128% | 4.73 | ~ | ~ | ~ |
[42] | MXene/TPU/PAN | 80% | 9.69 | 1750 | 140.6 ms | 0.1% |
[43] | Conductive ink/rubber | 50% | 12.14 | 5000 | 71.43 ms/178.49 ms | ~ |
[44] | CNTs/cotton | 300% | 21.85 | ~ | ~ | ~ |
This work | Graphene/CB/TPU | 300% | 110 | 1000 | 110 ms/112 ms | ~ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, J.; Liu, F.; Xu, G.; Liu, M. Data-Driven Strain Sensor Design Based on a Knowledge Graph Framework. Sensors 2024, 24, 5484. https://doi.org/10.3390/s24175484
Ke J, Liu F, Xu G, Liu M. Data-Driven Strain Sensor Design Based on a Knowledge Graph Framework. Sensors. 2024; 24(17):5484. https://doi.org/10.3390/s24175484
Chicago/Turabian StyleKe, Junmin, Furong Liu, Guofeng Xu, and Ming Liu. 2024. "Data-Driven Strain Sensor Design Based on a Knowledge Graph Framework" Sensors 24, no. 17: 5484. https://doi.org/10.3390/s24175484