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Abstract: Dunes are the primary geomorphological type in deserts, and the distribution of dune mor-
phologies is of significant importance for studying regional characteristics, formation mechanisms,
and evolutionary processes. Traditional dune morphology classification methods rely on visual
interpretation by humans, which is not only time-consuming and inefficient but also subjective in
classification judgment. These issues have impeded the intelligent development of dune morphology
classification. However, convolutional neural network (CNN) models exhibit robust feature represen-
tation capabilities for images and have achieved excellent results in image classification, providing a
new method for studying dune morphology classification. Therefore, this paper summarizes five
typical dune morphologies in the deserts of western Inner Mongolia, which can be used to define and
describe most of the dune types in Chinese deserts. Subsequently, field surveys and the experimental
collection of unmanned aerial vehicle (UAV) orthoimages for different dune types were conducted.
Five different types of dune morphology datasets were constructed through manual segmentation,
automatic rule segmentation, random screening, and data augmentation. Finally, the classification
of dune morphologies and the exploration of dataset construction methods were conducted using
the VGG16 and VGG19 CNN models. The classification results of dune morphologies were com-
prehensively analyzed using different evaluation metrics. The experimental results indicate that
when the regular segmentation scale of UAV orthoimages is 1024 × 1024 pixels with an overlap of
100 pixels, the classification accuracy, precision, recall, and F1-Score of the VGG16 model reached
97.05%, 96.91%, 96.76%, and 96.82%, respectively. The method for constructing a dune morphology
dataset from automatically segmented UAV orthoimages provides a reference value for the study of
large-scale dune morphology classification.

Keywords: UAV orthoimagery; dune classification; dataset; convolutional neural network;
image classification

1. Introduction

Desertification and land desertification are among the most significant ecological
and environmental issues globally. In the inland northwest of China, they are primarily
manifested as desertification. Dunes, as the main geomorphological type of desert, are
influenced by both internal and external environmental factors such as sand sources, topog-
raphy, vegetation, and moisture [1]. The formation process of dunes is complex, leading
to the existence of various dune classification systems. These can be categorized into four
main methods: dynamic classification, morphological classification, sedimentary condition
classification, and comprehensive classification [2]. Morphological characteristics serve
as the primary basis for delineating dune types and contain abundant information on the
evolution of dune morphologies, providing crucial guidance for research on the prevention
and control of desertification [3]. Exploring the classification of dune morphologies based
on CNN advances the collection and processing of desert information in an intelligent
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direction, enhancing the efficiency and accuracy of desert information gathering and laying
a solid foundation for the prevention and treatment of desertification. In the field of deep
learning, which is driven by big data, the quantity and quality of the dataset are key factors
affecting the performance of image classification models [4]. Currently, there is a gap in
publicly available datasets that utilize UAV remote sensing technology to obtain images
of dune morphologies. For dunes, which are large-scale, feature-complex, and similar
research subjects, the construction of the dataset must consider whether the images include
typical morphological characteristics of different dune types, whether they contain similar
features across different types, and the efficiency of construction. Therefore, the study of
manual segmentation through visual interpretation and automatic segmentation at various
scales provides foundational data for the automatic classification of dune morphologies.

Due to the complex and diverse morphological characteristics of dunes, which often
exhibit similarities, current classification methods predominantly rely on manual visual
interpretation. With the advancement of artificial intelligence (AI) technology, integrating
deep learning techniques with dune morphology classification can significantly enhance the
efficiency and accuracy of the process. Cui [5] utilized multi-source remote sensing data and
integrated it with the ResNet50 model to achieve the classification of the Gurbantunggut
Desert. By combining the FCN–VGG model with object-oriented multi-scale segmen-
tation, the classification accuracy at the boundaries of dunes was effectively improved.
Tang et al. [6] used Landsat-8 remote sensing imagery as foundational data, employing
the SandUnet model for dune detection, followed by a fine-tuned MobileNet model to
classify dune morphologies in the Taklamakan and Sahara Deserts. Van der Merwe et al. [7]
employed CNN models to identify barchan dunes on Earth. Azzaoui et al. [8] utilized high-
resolution IKONOS satellite imagery as a data source and combined a clustering-based
image segmentation approach with a transfer learning method based on the deep learning
AlexNet model to achieve barchan sand dunes collision detection with an experimental ac-
curacy of 82.01%. Cunez et al. [9] employed a CNN model, specifically YOLOv8, utilizing a
dataset constructed from multi-source remote sensing imagery and various types of images.
They conducted detection of individuals and groups of barchan dunes on Mars and Earth,
achieving confidence scores (estimated accuracy for each detected object) within 70% and
90%, with an average precision mean reaching 99%. Current research often relies on satellite
remote sensing imagery as the data source. While these data offer extensive coverage, the
resolution and update frequency may not meet the needs of certain specific applications.
For instance, the resolution of satellite imagery might be insufficient to capture small-scale
changes in dune morphology, and the long update cycles are not conducive to real-time
dynamic monitoring of dune morphology. Utilizing high-resolution orthoimagery obtained
from UAVs can complement the shortcomings of satellite remote sensing data, enhancing
the accuracy and timeliness of dune morphology classification.

The quality of the dataset is one of the critical factors influencing the performance
of classification tasks. Given the large scale and subtle features of dune morphologies,
which differ from the more distinct characteristics found in other domains such as precision
agriculture, tree species, and plant classification, the creation of a dune dataset presents a
unique challenge. Different types of datasets can exert varying influences on the classifica-
tion models. Jiang et al. [10] used GF-2 satellite remote sensing imagery as a data source
to construct forest stand-type datasets with four different image patch sizes. They com-
pared the classification accuracy and effectiveness on CNN models, and the experimental
results indicated that the classification performance was optimal with a 9 × 9 image patch,
achieving an overall accuracy of 94.78% and a Kappa coefficient of 0.9318. Xu et al. [11]
proposed a method for constructing an urban architectural style dataset, which resulted
in a classification accuracy of 57.8%, a recall rate of 80.91%, and an F1-Score of 0.634.
Kasimu et al. [12] explored the impact of the number of training samples in the dataset
on model classification accuracy using UAV imagery of oasis plant communities in the
heart of the desert as the data source, revealing that there is a certain dependency between
the model’s classification accuracy and an appropriate number of training samples. In
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the aforementioned studies, the construction of the datasets primarily focused on tree
species, buildings, and vegetation. There is a scarcity of research on the construction of
dune morphology classification datasets based on UAV orthoimagery. Considering the
characteristics of dune morphology, it is meaningful to study the construction methods for
dune morphology classification datasets.

This paper proposes a method for constructing dune morphology classification datasets
based on UAV orthoimagery. The contributions of this paper are summarized as follows:
Firstly, the paper identifies and summarizes five typical dune morphological types found in
the deserts of western Inner Mongolia, providing detailed descriptions of the characteristics
of each dune morphology. These can be used to define and classify most dunes in China.
Secondly, five different types of dune morphologies datasets are constructed by manual
segmentation, automatic rule segmentation, random screening, and data augmentation us-
ing UAV orthoimagery as a data source. Lastly, the paper employs the VGG16 and VGG19
models to classify the datasets of the five different types of dune morphologies, exploring
methods suitable for constructing datasets for dune morphology classification. This work
holds significant value for the development of intelligent desert information collection.

2. Materials and Methods
2.1. Overview of the Study Area

The present experiment focuses on the deserts of western Inner Mongolia as the
study area, including the Ulan Buh Desert, Hobq Desert, and Yamaleike Desert. Field
investigations have revealed the following: The Ulan Buh Desert experiences prevailing
northerly winds in winter and southerly winds in summer, with typical dune morphologies
including barchan dunes and dune chains, as well as reticulate dunes and nebkhas [13]. The
UAV data collection was conducted in desert areas within Alxa East County, near Wuhai
City, and within the borders of Hangjinhou Banner. The Hobq Desert is characterized by
northwesterly winds in winter and southeasterly winds in summer, with the main dune
morphologies being barchan dunes and dune chains, reticulate dunes, and nebkhas. The
UAV data collection primarily targeted the desert area near Duguitara Town in Hangjin
Banner. The Yamaleike Desert has a consistent southwesterly wind throughout the year,
with a significant presence of isolated barchan dunes along the southeastern fringes of the
desert [14]. The UAV data collection took place within the territory of Alxa East County.
The specific geographic location is depicted in Figure 1.
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2.2. Dune Morphology Classification System

Scholars both domestically and internationally have proposed a variety of differ-
ent standards for dune classification. This study will classify the dunes of the western
Inner Mongolia region based on the distribution types of dunes in the study area and
Zheng Wu’s [15] principle of genesis morphology. A total of five dune morphology types
have been summarized, which will serve as the foundation for the research on automatic
dune morphology classification and dataset construction.

(1) Barchan dunes and dune chains exhibit a crescent-shaped planar morphology, influ-
enced by unidirectional winds. These dunes have two wing-like extensions down-
wind, with asymmetrical slopes on either side. The windward slope is convex and
relatively gentle, while the leeward slope is concave and steeper. Under conditions
of abundant sand supply, a chain of barchan dunes, known as a dune chain, can
form [16].

(2) Linear dunes are formed under the influence of two winds that intersect at an acute
angle. Their prominent feature is a long and straight dune crest line, with symmetrical
slip faces on either side of the dune. In deserts, linear dunes are often arranged in
parallel and exhibit relatively regular spacing.

(3) Reticulate dunes are composed of two sets of intersecting dunes, and the plane shape
is grid. Based on the differences in the morphological characteristics of reticulate
dunes, they can be further divided into square reticulate dunes and long reticulate
dunes [17].

(4) Nebkhas form when aeolian sand is obstructed by shrubby vegetation, causing a
reduction in wind speed and the continuous accumulation of sand particles at the
base of the shrubs. In plane view, these dunes typically exhibit an oval, circular, or
tadpole-like shape, with a certain amount of shrubby vegetation covering the top of
the dune mound [18].

(5) In flat sandy land, there are no dunes of any form, presenting an extensive and
continuous planar morphology [19].

Example images of each type are shown in Figure 2.
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2.3. Data Sources

The data utilized in the experiment consists of orthophotos acquired through low-
altitude remote sensing by UAV. The specific UAV model employed is the DJI Phantom
4 Pro, equipped with a DJI FC6310 camera (DJI, Shenzhen, China). The relevant parameters
are detailed in Table 1. The experimental data collection was conducted in two phases,
with field surveys and UAV aerial photography carried out in different study areas in late
April 2023 and early August 2023, respectively. The process of UAV imagery collection is
depicted in Figure 3.

Table 1. UAV and camera-related parameters.

UAV Parameters Numerical Value Camera Parameters Numerical Value/Form

Weight (including
battery and paddles) 1388 g Image sensor 1-inch CMOS effective pixels 20 million

Wheelbase 350 mm

Maximum flight time About 30 min
Lens

FOV84◦8.8 mm/24 mm
(35 mm format equivalent)
f/2.8–f/11 with autofocus

(Focus distance 1 m- infinity)Maximum horizontal flight speed 72 km/h
Maximum tilt angle 42◦

Photo size
3:2 aspect ratio: 5472 × 3648
4:3 aspect ratio: 4864 × 3648

16:9 aspect ratio: 5472 × 3078
Maximum bearable wind speed 10 m/s

Maximum takeoff
altitude 6000 m

Satellite Positioning Module (SPM) GPS/GLONASS
dual mode Picture format JPE; GDNG(RAW), JPEG + DNG
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was conducted through the daily updated maps on the Ovitalmap platform before the
experiment. For each type of dune, 2–3 areas were planned, and kml files were exported
to facilitate subsequent UAV data collection. Before UAV aerial photography, on-site
manual visual interpretation of the collection area was required to assess whether it met
the data collection requirements. UAV data collection was generally scheduled from 10:00
to 15:00 when the weather was clear and under natural light conditions. The flight mission
involves route flying, with some UAV flight paths illustrated in Figure 4. Flight parameters
related to different types of dunes are shown in Table 2. A total of 10,769 photos with a
resolution of 5472 × 3078 pixels were collected.
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Table 2. UAV flight parameters.

Dune Types Flight Altitude/m Lateral Overlap Forward Overlap GSD/cm/Pixels

Linear dunes 80 75% 80% 2.19
Nebkhas 30 75% 80% 0.82

Barchan dunes and dune chains 80 75% 80% 2.19
Reticulate dunes 100 75% 80% 2.74
Flat sandy land 80 70% 80% 2.19

2.4. Dataset Construction Method

A total of five different types of dune morphology datasets were constructed. A total
of 1923 images were collected from the UAV data in April 2023, which were then manually
segmented through visual interpretation. The image data predominantly consisted of
individual, complete dune images with distinct morphological characteristics and varying
pixel resolutions. Data augmentation techniques such as zooming, rotating, adjusting
brightness, and adding different types of noise were applied to construct a manually
segmented dune morphologies dataset containing 3788 images. This dataset was then
randomly divided into a training set and a test set in an 8:2 ratio [20,21]. The quantities
of each dune type within the training and test sets are detailed in Table 3, and schematic
illustrations of the different dune types are presented in Figure 5.

Table 3. Manual segmentation of dune morphology datasets.

Dune Types Number of Training Sets Number of Test Sets Total

Flat sandy land 606 151 757
Barchan dunes and dune chains 575 143 718

Reticulate dunes 585 146 731
Nebkhas 635 157 792

Linear dunes 632 158 790

The UAV data captured in early August 2023 was processed for orthoimage mo-
saicking, resulting in partial orthoimages as shown in Figure 6. Taking into account the
typical dune morphologies of the western Inner Mongolia desert, including textural char-
acteristics, color, and spatial distribution, the UAV orthoimages were systematically auto-
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segmented into regular blocks of 1024 × 1024 pixels, 512 × 512 pixels, 256 × 256 pixels,
and 128 × 128 pixels. The specific method for constructing the dataset is as follows.
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Figure 6. UAV orthoimagery; (a) barchan dunes and dune chains; (b) linear dunes; (c) reticulate
dunes; (d) reticulate dunes.

The UAV orthoimages were systematically segmented into regular blocks of 1024 × 1024 pixels
with an overlap of 100 pixels. To ensure the dataset’s balance, diversity, and representativeness, data
augmentation techniques were employed, resulting in a total of 14,609 image data points. These
were then randomly divided into training and testing sets in an 8:2 ratio, with specific quantities
detailed in Table 4.
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Table 4. 1024 × 1024 pixels dataset.

Dune Types Number of Training Sets Number of Test Sets Total

Flat sandy land 2765 691 3456
Barchan dunes and dune chains 2480 620 3100

Reticulate dunes 1863 465 2328
Nebkhas 2436 608 3044

Linear dunes 2145 536 2681

The UAV orthoimageries were automatically segmented into a dataset with 512 × 512 pixel
blocks, utilizing an overlap of 100 pixels. Data augmentation was applied to various dune types,
including flat sandy land, nebkhas, and barchan dunes and dune chains. This process resulted
in a dataset comprising 47,354 image data. The dataset was then randomly divided into training
and testing sets in an 8:2 ratio, with the specific quantities outlined in Table 5.

Table 5. 512 × 512 pixels dataset.

Dune Types Number of Training Sets Number of Test Sets Total

Flat sandy land 6042 1510 7552
Barchan dunes and dune chains 8314 2078 10,392

Reticulate dunes 9770 2442 12,212
Nebkhas 6672 1668 8340

Linear dunes 7087 1771 8858

For the dataset consisting of 256 × 256 pixels blocks, an overlap of 100 pixels was
set. From the UAV orthoimagery of reticulate dunes, which was 43,082 × 34,407 pixels
in size, segmentation and filtering resulted in 53,915 image data. After random screening
at a ratio of 0.2, the dataset was reduced to 10,782 images. For the linear dunes, which
were captured in UAV orthoimages sized 39,573 × 33,417 pixels, segmentation and filtering
yielded 38,608 images. Applying a random sampling ratio of 0.3, the number of images
was further refined to 11,582. Flat sandy land, after data augmentation, contributed an
additional 9670 images to the dataset. In total, the dataset comprised 58,798 images, which
were then randomly divided into training and testing sets in an 8:2 ratio, with the specific
quantities detailed in Table 6.

Table 6. 256 × 256 pixels dataset.

Dune Types Number of Training Sets Number of Test Sets Total

Flat sandy land 7736 1934 9670
Barchan dunes and dune chains 10,112 2527 12,639

Reticulate dunes 8627 2156 10,783
Nebkhas 11,300 2824 14,124

Linear dunes 9266 2316 11,582

The dataset consisting of 128 × 128 pixels blocks was created with an overlap setting
of 10 pixels. Orthoimages of reticulate dunes, barchan dunes, and dune chains captured
by UAV were segmented, and then a random selection of data was performed at a ratio
of 0.2. Data augmentation was applied to the flat sandy land. This process resulted in a
total of 61,624 image data. The dataset was subsequently divided into training and testing
sets in an 8:2 ratio, with the specific quantities presented in Table 7. Example images of the
datasets with four different segmentation scales are illustrated in Figure 7.
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Table 7. 128 × 128 pixels dataset.

Dune Types Number of Training Sets Number of Test Sets Total

Flat sandy land 8592 2148 10,740
Barchan dunes and dune chains 9352 2338 11,690

Reticulate dunes 9259 2314 11,573
Nebkhas 11,191 2797 13,988

Linear dunes 10,907 2726 13,633

Sensors 2024, 24, x FOR PEER REVIEW 9 of 21 
 

 

For the dataset consisting of 256 × 256 pixels blocks, an overlap of 100 pixels was set. 
From the UAV orthoimagery of reticulate dunes, which was 43,082 × 34,407 pixels in size, 
segmentation and filtering resulted in 53,915 image data. After random screening at a ratio 
of 0.2, the dataset was reduced to 10,782 images. For the linear dunes, which were cap-
tured in UAV orthoimages sized 39,573 × 33,417 pixels, segmentation and filtering yielded 
38,608 images. Applying a random sampling ratio of 0.3, the number of images was fur-
ther refined to 11,582. Flat sandy land, after data augmentation, contributed an additional 
9670 images to the dataset. In total, the dataset comprised 58,798 images, which were then 
randomly divided into training and testing sets in an 8:2 ratio, with the specific quantities 
detailed in Table 6. 

Table 6. 256 × 256 pixels dataset. 

Dune Types Number of Training Sets Number of Test Sets Total 
Flat sandy land 7736 1934 9670 

Barchan dunes and dune chains 10,112 2527 12,639 
Reticulate dunes 8627 2156 10,783 

Nebkhas 11,300 2824 14,124 
Linear dunes 9266 2316 11,582 

The dataset consisting of 128 × 128 pixels blocks was created with an overlap setting 
of 10 pixels. Orthoimages of reticulate dunes, barchan dunes, and dune chains captured 
by UAV were segmented, and then a random selection of data was performed at a ratio of 
0.2. Data augmentation was applied to the flat sandy land. This process resulted in a total 
of 61,624 image data. The dataset was subsequently divided into training and testing sets 
in an 8:2 ratio, with the specific quantities presented in Table 7. Example images of the 
datasets with four different segmentation scales are illustrated in Figure 7. 

Table 7. 128 × 128 pixels dataset. 

Dune Types Number of Training Sets Number of Test Sets Total 
Flat sandy land 8592 2148 10,740 

Barchan dunes and dune chains 9352 2338 11,690 
Reticulate dunes 9259 2314 11,573 

Nebkhas 11,191 2797 13,988 
Linear dunes 10,907 2726 13,633 

 

     
(a) 

     
(b) 

Sensors 2024, 24, x FOR PEER REVIEW 10 of 21 
 

 

     
(c) 

     
(d) 

Figure 7. Sample image of different scale segmentation datasets: (a) 1024 × 1024 pixels dataset; (b) 
512 × 512 pixels dataset; (c) 256 × 256 pixels dataset; (d) 128 × 128 pixels dataset. 

2.5. CNN Model Selection and Parameter Configuration 
CNN is a class of feedforward neural networks that automatically learn representa-

tions of raw data through multiple convolutional and pooling layers, thereby exhibiting 
substantial feature extraction capabilities. CNN has found broad application in tasks re-
lated to image classification due to its proficiency in capturing and learning spatial pat-
terns within images. The VGG16 and VGG19 models are selected for their strong transfer 
learning capabilities. 

VGG16 refers to a CNN architecture that comprises a total of 16 layers, including 13 
convolutional layers and 3 fully connected layers. The convolutional layers are organized 
into 5 blocks, each utilizing a series of small, 3 × 3 convolutional kernels. The Rectified 
Linear Unit (ReLU) activation function is employed, as expressed by Equation (1), to ena-
ble the representation of nonlinear data. Following each convolutional block is a pooling 
layer with a 2 × 2 kernel, which employs max pooling to downsample the spatial dimen-
sions of the feature maps [22]. The fully connected layers serve as the “classifier” within 
the model, interpreting the high-level features extracted by the convolutional layers to 
perform the final classification. The network architecture of VGG16 is illustrated in Figure 
8. 

( ) (0, )f x max x=  (1)

 
Figure 8. VGG16 network structure diagram. 

VGG19 and VGG16 are fundamentally similar in architecture, with the primary dif-
ference being the depth of the network. VGG19 consists of 19 layers in total, including 16 
convolutional layers and 3 fully connected layers, organized into 5 convolutional blocks. 
The additional convolutional layers in VGG19 allow for further feature extraction from 
the images, enhancing the network’s expressive power. The specific network architecture 
of VGG19 is depicted in Figure 9. 

Figure 7. Sample image of different scale segmentation datasets: (a) 1024 × 1024 pixels dataset;
(b) 512 × 512 pixels dataset; (c) 256 × 256 pixels dataset; (d) 128 × 128 pixels dataset.

2.5. CNN Model Selection and Parameter Configuration

CNN is a class of feedforward neural networks that automatically learn representa-
tions of raw data through multiple convolutional and pooling layers, thereby exhibiting
substantial feature extraction capabilities. CNN has found broad application in tasks
related to image classification due to its proficiency in capturing and learning spatial pat-
terns within images. The VGG16 and VGG19 models are selected for their strong transfer
learning capabilities.

VGG16 refers to a CNN architecture that comprises a total of 16 layers, including
13 convolutional layers and 3 fully connected layers. The convolutional layers are organized
into 5 blocks, each utilizing a series of small, 3 × 3 convolutional kernels. The Rectified
Linear Unit (ReLU) activation function is employed, as expressed by Equation (1), to enable
the representation of nonlinear data. Following each convolutional block is a pooling layer
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with a 2 × 2 kernel, which employs max pooling to downsample the spatial dimensions of
the feature maps [22]. The fully connected layers serve as the “classifier” within the model,
interpreting the high-level features extracted by the convolutional layers to perform the
final classification. The network architecture of VGG16 is illustrated in Figure 8.

f (x) = max(0, x) (1)
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Figure 8. VGG16 network structure diagram.

VGG19 and VGG16 are fundamentally similar in architecture, with the primary dif-
ference being the depth of the network. VGG19 consists of 19 layers in total, including
16 convolutional layers and 3 fully connected layers, organized into 5 convolutional blocks.
The additional convolutional layers in VGG19 allow for further feature extraction from the
images, enhancing the network’s expressive power. The specific network architecture of
VGG19 is depicted in Figure 9.
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Figure 9. VGG19 network structure diagram.

The network structure is constructed, and the models are trained using the deep
learning framework PyTorch, with the VGG16 and VGG19 models as the foundation. Pre-
training is performed on the large-scale dataset ImageNet, and the parameters of the last
fully connected layer are fine-tuned using the Adam optimizer, while the remaining layers
serve as fixed feature extractors for the dune morphologies datasets. The loss function
selected is the cross-entropy loss function, with an initial learning rate of 0.01. The learning
rate is adjusted using the stepLR strategy, where the learning rate is reduced to 0.5 of its
original value after every 5 epochs. The experiment is run for 30 epochs, with a batch size
of 64. The experimental environment configuration is detailed in Table 8.

Table 8. Experimental environment configuration.

Name Configuration

Operating system Windows 10 64-bit operating system
Processor Intel(R) Xeon(R) Silver 4216 CPU@2.10 GHz 2.10 GHz (2 Processors) (Intel, Santa Clara, CA, USA)

Video memory NVIDIA GeForce RTX 3060 (NVIDIA, Santa Clara, CA, USA)
Memory 64 GB

Deep learning framework pytorch2.0.1
Programming language python3.9

CUDA version 12.2

2.6. Model Evaluation Metrics

To quantitatively evaluate the performance of the models, we have selected five
metrics: the confusion matrix, accuracy, precision, recall, and F1-Score. The confusion
matrix is presented in Table 9, while the formulas for accuracy, precision, recall, and
F1-Score are shown in Equations (2)–(5) [23].
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Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − Score =
2 × Precision × Recall

Precision × Recall
(5)

Table 9. Confusion matrix.

Confusion Matrix
Predicted Value

Positive Negative

True Value
Positive True Positive = TP False Negative = FN

Negative False Positive = FP True Negative = TN

3. Results
3.1. Single Category Classification Results and Analysis

Figure 10 presents the normalized results of the confusion matrices for the test sets
using different dataset construction methods. It can be observed from the figure that in
the datasets of 1024 × 1024 pixels, 512 × 512 pixels, and 256 × 256 pixels, the flat sandy
land has the highest classification accuracy. Compared with other types of dunes, flat
sandy land lacks the undulations characteristic of dunes, resulting in more distinct and
recognizable features.

(a) In the manually segmented dataset, the nebkhas exhibit the highest classification
accuracy. This is attributed to the presence of shrubby vegetation covering the sur-
face of these dunes, which provides a distinct textural characteristic that sets them
apart from other types of dunes. Conversely, barchan dunes and dune chains are
most frequently misclassified. This misclassification is likely due to their similar
morphological features when compared with linear dunes, making it challenging to
differentiate them based on visual or textural cues alone.

(b) In the 1024 × 1024 pixels dataset, the VGG16 model often misclassifies linear dunes as
nebkhas. This misclassification can be attributed to the presence of shrubby vegetation
in the areas where linear dunes were photographed, which may lead to confusion
during the classification process. The VGG19 model, on the other hand, predominantly
misclassifies barchan dunes and dune chains as linear dunes and reticulate dunes.
Additionally, there was a significant amount of misclassification between linear dunes
and reticulate dunes, which resulted in lower classification accuracy rates for barchan
dunes, dune chains, and reticulate dunes.

(c) In the 512 × 512 pixels dataset, the VGG16 model frequently misclassifies barchan
dunes and dune chains as linear dunes and flat sandy land. For the VGG19 model,
linear dunes were most often misclassified as reticulate dunes. This is likely because,
during the small-scale regular segmentation, the reticulate dunes may only include
a portion of their morphological features, which can resemble those of linear dunes,
thus making misclassifications more likely.

(d) In the 256 × 256 pixels dataset, barchan dunes and dune chains were often misclassi-
fied as flat sandy land. When segmenting the orthoimages of barchan dunes and dune
chains, the interdune areas share similar characteristics with flat sandy land. At the
smaller segmentation scale, a single image may not capture the morphological features
of barchan dunes and dune chains, leading to a higher likelihood of misclassification
between these two types.
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(e) In the 128 × 128 pixels dataset, due to the small segmentation scale, there was a
significant amount of misclassification. Specifically, barchan dunes and dune chains
were frequently misclassified as flat, sandy land. Additionally, reticulate dunes were
also misclassified, particularly barchan dunes and dune chains, as some of their
morphological features are similar. The smaller segmentation scale does not fully
capture the morphological characteristics, which can lead to confusion when the CNN
models are extracting deep semantic features.
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3.2. Results and Analysis of Different Dataset Construction Methods

The classification results for datasets of different dune morphologies are presented in
Table 10.

Table 10. Different dataset classification results.

Datasets Models Accuracy Precision Recall F1-Score

Manually segmented dataset VGG16 90.73% 90.64% 90.53% 90.44%
VGG19 90.73% 90.57% 90.65% 90.59%

1024 × 1024 pixels dataset VGG16 97.05% 96.91% 96.76% 96.82%
VGG19 95.75% 95.47% 95.50% 95.47%

512 × 512 pixels dataset VGG16 94.18% 94.09% 94.16% 94.09%
VGG19 93.25% 93.21% 93.40% 93.28%

256 × 256 pixels dataset VGG16 94.07% 94.00% 94.15% 94.03%
VGG19 92.86% 92.80% 92.91% 92.83%

128 × 128 pixels dataset VGG16 91.66% 91.24% 91.30% 91.23%
VGG19 90.58% 90.09% 90.09% 90.08%

(a) When the dataset is segmented at a scale of 1024 × 1024 pixels using a regular
segmentation method, the VGG16 model achieves the highest accuracy, precision,
recall, and F1-Score, which are 97.05%, 96.91%, 96.76%, and 96.82%, respectively.
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(b) The VGG16 model’s classification accuracy, arranged from highest to lowest, is as
follows: the dataset with 1024 × 1024 pixels dataset, the 512 × 512 pixels dataset, the
256 × 256 pixels dataset, the 128 × 128 pixels dataset, and the manually segmented
dataset.

(c) The VGG19 model’s classification accuracy, arranged from highest to lowest, is as fol-
lows: the 1024 × 1024 pixels dataset, the 512 × 512 pixels dataset, the 256 × 256 pixels
dataset, the manually segmented dataset, and the 128 × 128 pixels dataset.

Comprehensive analysis indicates that CNN models demonstrate superior performance
when classifying dune morphology datasets with a segmentation scale of 1024 × 1024 pixels
and an overlap of 100 pixels. Compared with manually segmented datasets, automatically
segmented datasets offer higher efficiency.

3.3. Visualization and Analysis of Semantic Feature Results for Test Set Images

To intuitively analyze the semantic distances between different dune morphology
types, t-SNE dimensionality reduction visualization was employed. The outputs from the
last fully connected layer of the VGG16 and VGG19 models were used as semantic features.
As shown in Figure 11, which illustrates the semantic feature maps for classifications across
different datasets, the following observations can be made:

(a) In the manually segmented dataset, nebkhas, flat sandy land, and reticulate dunes
exhibit distinct cluster structures. However, there is an overlap in the data points for
barchan dunes, dune chains, and linear dunes, suggesting that these dune types have
closer semantic distances and share similar textural characteristics.

(b) In the 1024 × 1024 pixels dataset, each type exhibits a distinct cluster structure, while
barchan dunes and dune chains, linear dunes, reticulate dunes, and nebkhas display
close semantic distances.

(c) In the 512 × 512 pixels dataset, data points for barchan dunes and dune chains,
nebkhas, and linear dunes are interspersed, with the three exhibiting similar textural
characteristics.

(d) In the 256 × 256 pixels dataset, the classification performance of the VGG16 model
surpasses that of the VGG19 model. The VGG16 model exhibits distinct cluster
structures, whereas in the VGG19 model, there is a clear misclassification across
various types, with data points showing a pronounced interspersion.

(e) In the 128 × 128 pixels dataset, data points for nebkhas and linear dunes are clustered
together, while other types are interspersed, exhibiting close semantic distances and
similar morphological features.

Semantic feature maps can intuitively interpret the results of single-category clas-
sification. The morphologies of dunes across different types exhibit similarities, which
can lead to misclassification by CNN models, thereby reducing accuracy. In comparison,
the 1024 × 1024 pixels dataset has a distinct cluster structure that stands out from other
datasets, demonstrating that the optimal classification results for dune morphologies are
achieved when the segmentation scale is set to 1024 × 1024 pixels. This segmentation scale
is suitable for the construction of dune morphology datasets.
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4. Discussion
4.1. Methods for Dune Morphology Dataset Construction

The present study proposes a method for constructing dune morphology classifica-
tion datasets suitable for CNN models based on orthoimagery acquired by UAVs. UAV
imagery provides a more detailed observation of the ground and is capable of capturing
subtle changes and detailed features of dune morphology, which is crucial for enhancing
the accuracy of dune classification. Research by Yang et al. [24] has demonstrated the
effectiveness of UAV imagery combined with multi-scale segmentation methods in forestry
resource surveys, indicating the potential of UAV imagery in extracting features of complex
terrains. Similarly, studies by Yang et al. [25] have showcased the application of UAV
imagery in conjunction with deep learning models in the field of precision agriculture,
further confirming the generalizability of combining UAV imagery with deep learning.

The production of classification datasets is a time-consuming and labor-intensive task.
In this experiment, a total of five different types of dune morphology datasets were con-
structed, including a manual segmentation dataset through visual interpretation and four
datasets segmented at different scales using rule-based methods. Image data at different
segmentation scales encompasses distinct dune morphologies and features. Larger segmen-
tation scales provide more complete representations of dune morphologies but result in
fewer segmented images, leading to datasets with more pronounced sample features. Con-
versely, smaller segmentation scales capture partial, typical features of dune morphologies.
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Due to the similarity among various dune morphological features, misclassification may
occur. However, this approach yields a greater number of segmented images, enriching
the dataset with a more diverse set of samples. Taking into account factors such as the
textural characteristics, color, spatial distribution of dune morphologies, and UAV flight
parameters within the study area, four different segmentation scales—1024 × 1024 pixels,
512 × 512 pixels, 256 × 256 pixels, and 128 × 128 pixels—were selected to perform rule-
based segmentation of UAV orthoimagery. The experimental results indicate that the
dataset constructed at a segmentation scale of 1024 × 1024 pixels demonstrates more
pronounced cluster structures and better classification results. Due to the fixed scale of
orthoimagery, when a larger segmentation scale (such as 2048 × 2048 pixels) is used, the
resulting number of images is reduced, but each image contains more feature information.
Consequently, this can lead to insufficient feature learning by the models, which may
affect the classification effectiveness of dune morphologies. As shown in Table 11, with the
increase in segmentation scale, the model training time becomes longer. This is because
larger segmentation scales encompass more feature information, which in turn increases
the learning time for the model. The classification model trained on the 1024 × 1024 pixels
dataset has already reached a training time of nearly 27 h, with a classification accuracy
of 97.05%. Considering the trade-offs, if the segmentation scale is larger, the required
time increases, making the cost-effectiveness of constructing dune morphology datasets
less favorable.

Table 11. Training time for different datasets.

Datasets Classification Model Training Time

1024 × 1024 pixels dataset VGG16 26 h 30 min
VGG19 26 h 56 min

512 × 512 pixels dataset VGG16 18 h 26 min
VGG19 19 h

256 × 256 pixels dataset VGG16 7 h 16 min
VGG19 11 h 3 min

128 × 128 pixels dataset VGG16 6 h 47 min
VGG19 8 h 3 min

Zhao [1] selected three different segmentation scales of 20 × 20 pixels, 40 × 40 pixels,
and 60 × 60 pixels for regular slicing of remote sensing imagery. The results indicated that
the ResNet50 model achieved the highest classification accuracy at a scale of 60 × 60 pixels,
while the VGG19 model demonstrated the highest classification accuracy at a scale of
20 × 20 pixels. Jiang et al. [10] segmented remote sensing imagery into image patches
of sizes 5 × 5, 7 × 7, 9 × 9, and 11 × 11. The experimental results showed that the
classification effect was optimal with an image patch size of 9 × 9. In the aforementioned
studies, the data sources are all satellite remote sensing images with a spatial resolution at
the meter level; hence, their segmentation scales are smaller than the segmentation scales
used in this experiment. Therefore, the research on constructing datasets based on different
segmentation scales of UAV orthoimagery is both meaningful and well-founded.

4.2. Performance of Different Models in Dune Morphology Classification Datasets

A comparative analysis was conducted using the VGG16 and VGG19 models within
the CNN on five different dune morphology classification datasets. Experimental re-
sults indicate that both the VGG16 and VGG19 models performed excellently on the
1024 × 1024 pixels dataset, achieving classification accuracies of 97.05% and 95.75%, respec-
tively. The analysis suggests that larger segmentation scales can more completely reflect
dune morphologies. For large-scale research subjects like dunes, the integrity of textural
and morphological features positively influences model classification. The segmentation
scale of 1024 × 1024 pixels captures more information about dune morphologies compared
with the other three scales, allowing the dataset to more accurately delineate the charac-
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teristic information between different dunes. At other smaller segmentation scales, the
representation of dune morphologies and textural features is insufficient, which affects
the classification accuracy of CNN models. Rule-based segmented datasets, as opposed to
manually segmented datasets, contain a larger number of images, and the morphological
features learned during training are more pronounced; hence, the classification accuracy
of manually segmented datasets is lower. Lin et al. [26] conducted a study using UAV
imagery in conjunction with the DenseNet model for tree species classification, achieving a
maximum accuracy of 87.54%. Pouliot et al. [27] explored the feasibility of using CNN on
Landsat remote sensing imagery for wetland classification, with a classification accuracy of
68%. Dyrmann et al. [28] applied CNN to identify plant species in complex environments,
reaching a classification accuracy of 86.2%. The classification results of this experiment are
superior to those of the aforementioned studies; thus, the dune morphology classification
dataset construction method and the selection of the CNN model in this paper are of
reference value.

5. Conclusions

This paper uses UAV orthoimagery as the data source. It constructs five types of
typical dune morphology datasets from the western desert of Inner Mongolia through
manual segmentation and automatic rule-based segmentation. The study explores the
classification of dune morphologies and the construction methods of the datasets using the
VGG16 and VGG19 models within CNNs.

(1) When the segmentation scale of UAV orthoimagery is set to 1024 × 1024 pixels
with an overlap of 100 pixels, the classification outcome for dune morphologies is
optimal. The VGG16 model achieved classification accuracy, precision, recall, and
an F1-Score of 97.05%, 96.91%, 96.76%, and 96.82%, respectively. Compared with the
manually segmented dataset, these metrics improved by 6.32%, 6.27%, 6.23%, and
6.38%, respectively.

(2) The semantic feature maps of the test set visually demonstrate that the 1024 × 1024 pix-
els dataset has distinct cluster structures for each type of dune morphology, resulting
in the best classification performance.

The deficiency and prospect of this study:

(1) Due to the significant differences in scale and height of the dunes in the study area,
different Ground Sampling Distance (GSD) were utilized when collecting UAV data.
The impact of varying GSD on the classification results of dune morphology can be
further explored in future research.

(2) In future research, a larger collection of UAV orthoimagery data will be gathered to
explore further the specific impact of varying quantities of each dune morphology
type within the dataset on model classification. Additionally, the influence of different
quantities of dune morphology datasets on model classification will be investigated.
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