Physical Functioning, Physical Activity, and Variability in Gait Performance during the Six-Minute Walk Test
<p>Functional testing setup demonstrating the (<b>a</b>) four square step test, (<b>b</b>) six-minute walk test, and (<b>c</b>) wearable sensor configuration for the six-minute walk test.</p> "> Figure A1
<p>Change in gait performance measures across the six-minute walk test. No statistically significant effects of minutes were observed.</p> "> Figure A2
<p>Gait parameters significantly differed for the slow FSST group when compared to the fast and medium groups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functional Testing
2.2. Physical Activity Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cruz-Jimenez, M. Normal Changes in Gait and Mobility Problems in the Elderly. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 713–725. [Google Scholar] [CrossRef]
- Hamacher, D.; Liebl, D.; Hodl, C.; Hessler, V.; Kniewasser, C.K.; Thonnessen, T.; Zech, A. Gait Stability and Its Influencing Factors in Older Adults. Front. Physiol. 2019, 9, 1955. [Google Scholar] [CrossRef]
- Konig, N.; Singh, N.B.; Baumann, C.R.; Taylor, W.R. Can Gait Signatures Provide Quantitative Measures for Aiding Clinical Decision-Making? A Systematic Meta-Analysis of Gait Variability Behavior in Patients with Parkinson’s Disease. Front. Hum. Neurosci. 2016, 30, 319. [Google Scholar] [CrossRef]
- Storm, F.A.; Cesareo, A.; Reni, G.; Biffi, E. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review. Sensors 2020, 20, 2660. [Google Scholar] [CrossRef] [PubMed]
- Angelini, L.; Hodgkinson, W.; Smith, C.; Dodd, J.M.; Sharrack, B.; Mazza, C.; Paling, D. Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting. J. Neurol. 2020, 267, 2897–2909. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward Pervasive Gait Analysis with Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef]
- Berg-Hansen, P.; Moen, S.M.; Austeng, A.; Gonzales, V.; Klyve, T.D.; Negard, H.; Seeberg, T.M.; Celius, E.G.; Meyer, F. Sensor-based gait analyses of the six-minute walk test identify qualitative improvement in gait parameters of people with multiple sclerosis after rehabilitation. J. Neurol. 2022, 269, 3723–3734. [Google Scholar] [CrossRef] [PubMed]
- Grimpampi, E.; Oesen, S.; Halper, B.; Hofmann, M.; Wessner, B.; Mazza, C. Reliability of gait variability assessment in older individuals during. J. Biomech. 2015, 48, 4185–4189. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Deng, M.; Liang, X.; Wei, H.; Wu, X. Features and predictive value of 6-min walk test outcomes in interstitial lung disease: An observation study using wearable monitors. BMJ Open 2022, 12, e055077. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Pijnappels, M.; Rispens, S.M.; Elders, P.J.; Lips, P.; Daffertshofer, A.; Beek, P.J.; van Dieen, J.H. Daily-Life Gait Quality as Predictor of Falls in Older People: A 1-Year Prospective Cohort Study. PLoS ONE 2016, 11, e0158623. [Google Scholar] [CrossRef]
- Rispens, S.M.; van Schooten, K.S.; Pijnappels, M.; Daffertshofer, A.; Beek, P.J.; van Dieen, J.H. Identification of fall risk predictors in daily life measurements: Gait characteristics’ reliability and association with self-reported fall history. Neurorehabilit. Neural Repair. 2015, 29, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Teraz, K.; Marusic, U.; Kalc, M.; Simunic, B.; Pori, P.; Grassi, B.; Lazzer, S.; Narici, M.V.; Blenkus, M.G.; di Prampero, P.E.; et al. Sarcopenia parameters in active older adults—An eight-year longitudinal study. BMC Public Health 2023, 23, 917. [Google Scholar] [CrossRef] [PubMed]
- de Vries, N.M.; van Ravensberg, C.D.; Hobbelen, J.S.; Olde Rikkert, M.G.; Staal, J.B.; Nijhuis-van der Sanden, M.W. Effects of physical exercise therapy on mobility, physical functioning, physical activity and quality of life in community-dwelling older adults with impaired mobility, physical disability and/or multi-morbidity: A meta-analysis. Ageing Res. Rev. 2012, 11, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Cleary, K.; Skornyakov, E. Predicting falls in older adults using the four square step test. Physiother. Theory Pract. 2017, 10, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Shuman, V.; Coyle, P.C.; Perera, S.; Van Swearingen, J.M.; Albert, S.M.; Brach, J.S. Association Between Improved Mobility and Distal Health Outcomes. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Ware, J., Jr.; Sherbourne, C. The MOS 36-item short-form health survey (SF-36).I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Hays, R.; Bjorner, J.; Revicki, D.; Spritzer, K.; Cella, D. Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual. Life Res. 2009, 18, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Butland, R.J.; Pang, J.; Gross, E.R.; Woodcock, A.A.; Geddes, D.M. Two-, six-, and 12-minute walking tests in respiratory disease. BMJ 1982, 284, 1607–1608. [Google Scholar] [CrossRef]
- Mansour, K.; Rezzoug, N.; Gorce, P. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture 2015, 42, 409–414. [Google Scholar] [CrossRef]
- ProtoKinetics Movement Analysis Software Measurements and Definitions; ProtoKinetics, L.L.C.: Havertown, PA, USA, 2011.
- Lord, S.; Galna, B.; Rochester, L. Moving Forward on Gait Measurement: Toward a More Refine Approach. Mov. Disord. 2013, 28, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sierra, S.; Shin, Y.; Goldman, M.D. Gait Speed Trajectory During the Six-Minute Walk Test in Multiple Sclerosis: A Measure of Walking Endurance. Front. Neurol. 2021, 12, 698599. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Garner, H.R.; Bassett, D.R. Evaluation of ActiGraph’s Low-Frequency Filter in Laboratory and Free-Living Environments. Med. Sci. Sports Exerc. 2015, 47, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of Accelerometer Wear and Nonwear Time Classification Algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Montoye, A.H.; Clevenger, K.A.; Pfeiffer, K.A.; Nelson, M.B.; Bock, J.M.; Imboden, M.T.; Kaminsky, L.A. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. J. Sports Sci. 2020, 38, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.; Dzurino, D.; Karleskint, M.; Tucker, M. Examining the reliability, correlation, and validity of commonly used assessment tools to measure balance. Health Sci. Rep. 2018, 1, e98. [Google Scholar] [CrossRef] [PubMed]
- 36-Item Short Form Survey (SF-36) Scoring Instructions. Available online: https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form/scoring.html (accessed on 30 January 2024).
- Bohannon, R.W.; DePasquale, L. Physical Functioning Scale of the Short-Form (SF) 36: Internal consisntency and validity with older adults. J. Geriatr. Phys. Ther. 2010, 33, 16–18. [Google Scholar] [PubMed]
- University, N. PROMIS® Reference Populations. 14 September 2023. Available online: https://www.healthmeasures.net/score-and-interpret/interpret-scores/promis/reference-populations (accessed on 5 October 2023).
- James, E.G.; Conatser, P.; Karabulut, M.; Leveille, S.G.; Hausdorff, J.M.; Travison, T.; Bean, J.F. Walking Speed Affects Gait Coordination and Variability Among Older Adults With and Without Mobility Limitations. Arch. Phys. Med. Rehabil. 2020, 101, 1377–1382. [Google Scholar] [CrossRef]
- Mortaza, N.; Abu Osman, N.A.; Mehdikhani, N. Are the spatio-temporal parameters of gait capable of distinguishing a faller from a non-faller elderly? Eur. J. Phys. Rehabil. Med. 2014, 50, 677–691. [Google Scholar]
- Wu, X.; Nussbaum, M.A.; Madigan, M.L. Executive Function and Measures of Fall Risk Among People With Obesity. Percept. Mot. Skills 2016, 122, 825–839. [Google Scholar] [CrossRef] [PubMed]
- de Asis Ramos, R.; Silva Guimaraes, F.; Dionyssiotis, Y.; Tsekoura, D.; Papathanasiou, J.; de Sa Ferreira, A. Development of a multivariate model of the six-minute walked distance to predict functional exercise capacity in hypertension. J. Bodyw. Mov. Ther. 2019, 23, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.P.; Ferreira, A.S.; Guimaraes, F.; Papathanasiou, J.; Lopes, A.J. Predictive models for the six-minute walk test considering the walking course and physical activity level. Eur. J. Phys. Rehabil. Med. 2019, 55, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.; Ferguson, S.; Ellis, G.; Hunter, R.F. Validity of the International Physical Activity Questionnaire (IPAQ) for assessing moderate-to-vigorous physical activity and sedentary behaviour of older adults in the United Kingdom. BMC Med. Res. Methodol. 2018, 18, 176. [Google Scholar] [CrossRef] [PubMed]
- Schrack, J.A.; Kuo, P.-L.; Wanigatunga, A.A.; Di, J.; Simonsick, E.M.; Spira, A.P.; Ferruci, L.; Zipunnikov, V. Active-to-Sedentary Behavior Transitions, Fatigability, and Physical Functioning in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.S.; Harezlak, J.; Moored, K.D.; Urbanek, J.K.; Boudreau, R.M.; Toto, P.E.; Hawkins, M.; Santanasto, A.J.; Schrack, J.A.; Simonsick, E.M.; et al. Development of a Novel Accelerometry-Based Performance Fatigability Measure for Older Adults. Med. Sci. Sports Exerc. 2022, 54, 1782–1793. [Google Scholar] [CrossRef]
Age (years) | 62.2 ± 6.4 | |
BMI (kg/m2) | 34.0 ± 6.4 | |
Sex, male (n, %) | 12, 57.1% | |
Assistive device (n, %) | None | 17, 81.0% |
Cane | 3, 14.3% | |
Rollator | 1, 4.8% | |
Race (n, %) | Black or African American | 14, 66.7% |
White or Caucasian | 7, 33.3% |
Gait Domain | Gait Performance Measure | Six-Minute Walk Test—Minute | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 a | 5 | 6 | |||
Pace | Swing time COV (%) | 3.47 ± 1.65 | 3.71 ± 2.32 | 3.70 ± 2.17 | 3.82 ± 2.49 | 3.70 ± 2.06 | 3.99 ± 2.31 | 0.986 |
Postural control | Stance percentage (% of stride) | 63.87 ± 2.16 | 64.32 ± 2.11 | 64.45 ± 1.94 | 64.55 ± 1.96 | 64.58 ± 2.18 | 64.29 ± 1.97 | 0.893 |
Rhythm | Stride time (s) | 1.10 ± 0.16 | 1.13 ± 0.18 | 1.14 ± 0.18 | 1.16 ± 0.19 | 1.15 ± 0.20 | 1.14 ± 0.19 | 0.963 |
Stance time (s) | 0.73 ± 0.12 | 0.73 ± 0.14 | 0.74 ± 0.14 | 0.75 ± 0.14 | 0.74 ± 0.16 | 0.73 ± 0.14 | 0.954 | |
Variability | Stride time COV (%) | 3.07 ± 1.04 | 3.46 ± 2.00 | 3.26 ± 1.10 | 3.41 ± 2.05 | 3.61 ± 2.97 | 3.84 ± 3.18 | 0.905 |
Stance time COV (%) | 4.11 ± 1.40 | 4.81 ± 3.67 | 4.28 ± 1.47 | 4.75 ± 3.58 | 4.88 ± 4.43 | 5.13 ± 4.87 | 0.932 |
Gait Speed (m/s) | Four Square Step Test (s) ˄ | SF36 Physical Function | GHS Physical | GHS Mental | Daily Sedentary Activity (%) | Daily MVPA (%) | 6-min Walk Test (m) | |
---|---|---|---|---|---|---|---|---|
Increase in swing time variability | −0.372 | 0.412 | −0.197 | −0.059 | 0.136 | −0.453 | −0.028 | −0.462 * |
Increase in stance percent | −0.291 | 0.321 | −0.283 | −0.183 | −0.085 | −0.331 | 0.135 | −0.364 |
Increase in stride time | −0.213 | 0.160 | −0.594 ** | 0.023 | −0.360 | −0.156 | −0.036 | −0.394 |
Increase in stance time | −0.172 | 0.115 | −0.679 ** | 0.007 | −0.379 | −0.123 | −0.115 | −0.362 |
Increase in stride time variability | −0.590 ** | 0.614 ** | −0.273 | 0.219 | −0.056 | −0.410 | 0.003 | −0.429 |
Increase in stance time variability | −0.433 | 0.498 * | −0.375 | 0.188 | −0.152 | −0.282 | −0.028 | −0.358 |
Max Occurs in Minute: | Min Occurs in Minute: | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
Swing time COV | 3 | 3 | 3 | 4 | 3 | 5 | 3 | 4 | 2 | 4 | 5 | 3 |
Stance percentage | 5 | 3 | 4 | 2 | 5 | 2 | 4 | 5 | 2 | 6 | 0 | 4 |
Stride time | 1 | 1 | 6 | 3 | 7 | 3 | 13 | 4 | 1 | 0 | 1 | 2 |
Stance time | 1 | 1 | 5 | 4 | 5 | 5 | 15 | 3 | 0 | 1 | 0 | 2 |
Stride time COV | 3 | 3 | 6 | 2 | 4 | 3 | 2 | 3 | 4 | 7 | 1 | 4 |
Stance time COV | 5 | 3 | 4 | 1 | 5 | 3 | 5 | 3 | 1 | 3 | 3 | 6 |
Model | Intercept | Time | FSST Group | Time × FSST Group | |
---|---|---|---|---|---|
Swing time variability | R2 = 0.475 p < 0.001 | ηp2 = 0.863 p < 0.001 | ηp2 = 0.015 p = 0.893 | ηp2 = 0.463 p < 0.001 | ηp2 = 0.031 p = 0.967 |
Stance percentage | R2 = 0.472 p < 0.001 | ηp2 = 1.000 p < 0.001 | ηp2 = 0.040 p = 0.484 | ηp2 = 0.457 p < 0.001 | ηp2=0.011 p = 1.000 |
Stance time | R2 = 0.577 p < 0.001 | ηp2 = 0.985 p < 0.001 | ηp2 = 0.028 p = 0.690 | ηp2 = 0.570 p < 0.001 | ηp2 = 0.014 p = 0.999 |
Stride time | R2 = 0.554 p < 0.001 | ηp2 = 0.988 p < 0.001 | ηp2 = 0.021 p = 0.801 | ηp2 = 0.547 p < 0.001 | ηp2 = 0.012 p = 0.999 |
Stance time variability | R2 = 0.279 p < 0.001 | ηp2 = 0.723 p < 0.001 | ηp2 = 0.036 p = 0.556 | ηp2 = 0.214 p < 0.001 | ηp2 = 0.094 p = 0.358 |
Stride time variability | R2 = 0.363 p = 0.003 | ηp2 = 0.800 p < 0.001 | ηp2 = 0.046 p = 0.407 | ηp2 = 0.305 p < 0.001 | ηp2 = 0.100 p = 0.306 |
FSST Group | |||
---|---|---|---|
≤12 s (N = 4) | 12.01–14.99 s (N = 11) | ≥15 s (N = 4) | |
Swing time variability (%) | 3.07 a | 3.13 a | 6.71 |
Stance percentage (%) | 63.30 a | 63.73 a | 66.18 |
Stance time (s) | 0.66 a | 0.69 a | 0.91 |
Stride time (s) | 1.04 a | 1.08 a | 1.37 |
Stance time variability (%) | 4.15 a | 3.65 a | 7.79 |
Stride time variability (%) | 2.93 a | 2.89 a | 5.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rekant, J.; Ortmeyer, H.; Giffuni, J.; Friedman, B.; Addison, O. Physical Functioning, Physical Activity, and Variability in Gait Performance during the Six-Minute Walk Test. Sensors 2024, 24, 4656. https://doi.org/10.3390/s24144656
Rekant J, Ortmeyer H, Giffuni J, Friedman B, Addison O. Physical Functioning, Physical Activity, and Variability in Gait Performance during the Six-Minute Walk Test. Sensors. 2024; 24(14):4656. https://doi.org/10.3390/s24144656
Chicago/Turabian StyleRekant, Julie, Heidi Ortmeyer, Jamie Giffuni, Ben Friedman, and Odessa Addison. 2024. "Physical Functioning, Physical Activity, and Variability in Gait Performance during the Six-Minute Walk Test" Sensors 24, no. 14: 4656. https://doi.org/10.3390/s24144656
APA StyleRekant, J., Ortmeyer, H., Giffuni, J., Friedman, B., & Addison, O. (2024). Physical Functioning, Physical Activity, and Variability in Gait Performance during the Six-Minute Walk Test. Sensors, 24(14), 4656. https://doi.org/10.3390/s24144656