The Importance of Preconditioning for the Sonographic Assessment of Plantar Fascia Thickness and Shear Wave Velocity
<p>The imaging set-up (<b>a</b>) and typical ultrasound images for the measurement of plantar fascia thickness at the proximal (<b>b</b>), middle (<b>c</b>), and distal parts (<b>d</b>) of the tissue.</p> "> Figure 2
<p>The measurement of shear wave velocity at the middle portion of the plantar fascia.</p> "> Figure 3
<p>Population average SW velocities at baseline and after walking, jumping, and passive extensions. Statistically significant differences from baseline (<span class="html-italic">p</span> < 0.05) are indicated with (*) (paired-samples <span class="html-italic">t</span>-test).</p> "> Figure 4
<p>Statistically significant association between shear wave (SW) velocity and thickness in the middle part of the plantar fascia. The results presented in this graph were captured immediately after the participants had completed 20 star-jumps.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monteagudo, M.; de Albornoz, P.M.; Gutierrez, B.; Tabuenca, J.; Álvarez, I. Plantar Fasciopathy: A Current Concepts Review. EFORT Open Rev. 2018, 3, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Makwana, N. “Not Plantar Fasciitis”: The Differential Diagnosis and Management of Heel Pain Syndrome. Orthop. Trauma 2011, 25, 198–206. [Google Scholar] [CrossRef]
- Tu, P.; Bytomski, J.R. Diagnosis of Heel Pain. Am. Fam. Physician 2011, 84, 909–916. [Google Scholar] [PubMed]
- McMillan, A.; Landorf, K.; Barrett, J.; Menz, H.; Bird, A. Diagnostic Imaging for Chronic Plantar Heel Pain: A Systematic Review and Meta-Analysis. J. Foot Ankle Res. 2011, 4, P40. [Google Scholar] [CrossRef]
- Si, V.; Hrubes, M. Plantar Fascia. In Tendinopathy: From Basic Science to Clinical Management; Onishi, K., Fredericson, M., Dragoo, J.L., Eds.; Springer International Publishing: Cham, The Netherlands, 2021; pp. 265–279. ISBN 978-3-030-65335-4. [Google Scholar]
- Draghi, F.; Gitto, S.; Bortolotto, C.; Draghi, A.G.; Ori Belometti, G. Imaging of Plantar Fascia Disorders: Findings on Plain Radiography, Ultrasound and Magnetic Resonance Imaging. Insights Imaging 2017, 8, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Shadmehr, A.; Olyaei, G.; Bashardoust Tajali, S.; Mir, S.M.; Sobhani, V. Ultrasonographic Measurements of Plantar Fascia Thickness and Echogenicity in Individuals with and without Plantar Fasciitis: Reliability and Group Differences. Foot 2021, 49, 101849. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ho, H.-M.; Ying, M.; Fu, S.N. Association Between Plantar Fascia Vascularity and Morphology and Foot Dysfunction in Individuals With Chronic Plantar Fasciitis. J. Orthop. Sports Phys. Ther. 2013, 43, 727–734. [Google Scholar] [CrossRef]
- Hansen, L.; Krogh, T.P.; Ellingsen, T.; Bolvig, L.; Fredberg, U. Long-Term Prognosis of Plantar Fasciitis: A 5- to 15-Year Follow-up Study of 174 Patients With Ultrasound Examination. Orthop. J. Sports Med. 2018, 6, 2325967118757983. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Messina, C.; Gitto, S.; Serpi, F.; Basile, M.; Acquasanta, M.; Lanza, E.; Sconfienza, L.M. Shear-Wave Elastography of the Plantar Fascia: A Systematic Review and Meta-Analysis. J. Ultrasound 2023, 26, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Chiu, Y.-H.; Chang, K.-V.; Wu, W.-T.; Özçakar, L. Ultrasound Elastography for the Evaluation of Plantar Fasciitis: A Systematic Review and Meta-Analysis. Eur. J. Radiol. 2022, 155, 110495. [Google Scholar] [CrossRef]
- Erdemir, A.; Hamel, A.J.; Fauth, A.R.; Piazza, S.J.; Sharkey, N.A. Dynamic Loading of the Plantar Aponeurosis in Walking. J. Bone Jt. Surg. Am. 2004, 86, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Corradin, M.; Macchi, V.; Morra, A.; Porzionato, A.; Biz, C.; De Caro, R. Plantar Fascia Anatomy and Its Relationship with Achilles Tendon and Paratenon. J. Anat. 2013, 223, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Fessel, G.; Jacob, H.A.C.; Wyss, C.; Mittlmeier, T.; Müller-Gerbl, M.; Büttner, A. Changes in Length of the Plantar Aponeurosis during the Stance Phase of Gait--an in Vivo Dynamic Fluoroscopic Study. Ann. Anat. 2014, 196, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, B.; Aubeeluck, A.; Yang, Y.; Huang, Y.; Zhou, J.; Yu, G. Anatomy and Biomechanical Properties of the Plantar Aponeurosis: A Cadaveric Study. PLoS ONE 2014, 9, e84347. [Google Scholar] [CrossRef] [PubMed]
- Crofts, G.; Angin, S.; Mickle, K.J.; Hill, S.; Nester, C.J. Reliability of Ultrasound for Measurement of Selected Foot Structures. Gait Posture 2014, 39, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Angin, S.; Mickle, K.J.; Nester, C.J. Contributions of Foot Muscles and Plantar Fascia Morphology to Foot Posture. Gait Posture 2018, 61, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Shiotani, H.; Yamashita, R.; Mizokuchi, T.; Naito, M.; Kawakami, Y. Site- and Sex-Differences in Morphological and Mechanical Properties of the Plantar Fascia: A Supersonic Shear Imaging Study. J. Biomech. 2019, 85, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Amir, A.; Kim, S.; Stecco, A.; Jankowski, M.P.; Raghavan, P. Hyaluronan Homeostasis and Its Role in Pain and Muscle Stiffness. PM R 2022, 14, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, T.; Chatzistergos, P.; Maganaris, C. Supersonic Shear Wave Elastography of Human Tendons Is Associated with in Vivo Tendon Stiffness over Small Strains Medial Gastrocnemius Musculotendinous Junction Soleus Tendon Junction Whole. J. Biomech. 2023, 152, 111558. [Google Scholar] [CrossRef]
- Chatzistergos, P.; Behforootan, S.; Allan, D.; Naemi, R.; Chockalingam, N. Shear Wave Elastography Can Assess the In-Vivo Nonlinear Mechanical Behavior of Heel-Pad. J. Biomech. 2018, 28, 114–150. [Google Scholar] [CrossRef]
- Naemi, R.; Chatzistergos, P.; Sundar, L.; Chockalingam, N.; Ramachandran, A. Differences in the Mechanical Characteristics of Plantar Soft Tissue between Ulcerated and Non-Ulcerated Foot. J. Diabetes Complicat. 2016, 30, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Chang, K.V.; Mio, S.; Chen, W.S.; Wang, T.G. Sonoelastography of the Plantar Fascia. Radiology 2011, 259, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Chatzistergos, P.; Chockalingam, N. An In-Vivo Model For Overloading-Induced Soft Tissue Injury. Sci. Rep. 2022, 12, 6047. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-J.; Lee, S.; Song, Y.; Kim, C.K.; Lee, B.G.; Bae, J. Elasticity of Torn Supraspinatus Tendons Measured by Shear Wave Elastography: A Potential Surrogate Marker of Chronicity? Ultrasonography 2020, 39, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Baur, D.; Schwabl, C.; Kremser, C.; Taljanovic, M.S.; Widmann, G.; Sconfienza, L.M.; Sztankay, J.; Feuchtner, G.; Klauser, A.S. Shear Wave Elastography of the Plantar Fascia: Comparison between Patients with Plantar Fasciitis and Healthy Control Subjects. J. Clin. Med. 2021, 10, 2351. [Google Scholar] [CrossRef] [PubMed]
- Schillizzi, G.; Alviti, F.; D’Ercole, C.; Elia, D.; Agostini, F.; Mangone, M.; Paoloni, M.; Bernetti, A.; Pacini, P.; Polti, G.; et al. Evaluation of Plantar Fasciopathy Shear Wave Elastography: A Comparison between Patients and Healthy Subjects. J. Ultrasound 2021, 24, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Gatz, M.; Bejder, L.; Quack, V.; Schrading, S.; Dirrichs, T.; Tingart, M.; Kuhl, C.; Betsch, M. Shear Wave Elastography (SWE) for the Evaluation of Patients with Plantar Fasciitis. Acad. Radiol. 2020, 27, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Beydoğan, E.; Yalçın, A. Is 2D SWE Sufficient as Clinical Diagnosis in Patients with Plantar Fasciitis? Acta Radiol. 2023, 64, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Alviti, F.; D’Ercole, C.; Schillizzi, G.; Mangone, M.; Bernetti, A.; Ioppolo, F.; Di Sante, L.; Minafra, P.; Santilli, V.; Elia, D.; et al. Elastosonographic Evaluation after Extracorporeal Shockwave Treatment in Plantar Fasciopathy. Med. Ultrason. 2019, 21, 399. [Google Scholar] [CrossRef]
- Sugino, Y.; Yoshimura, I.; Hagio, T.; Ishimatsu, T.; Nagatomo, M.; Yamamoto, T. Effect of Plantar Fascia-Specific Stretching and Achilles Tendon Stretching on Shear Wave Elasticity of the Plantar Fascia in Healthy Subjects. Foot Ankle Surg. 2023, 29, 208–212. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lin, Y.-Y.; Chen, W.-S.; Wang, T.-G. Sonoelastographic Evaluation of Plantar Fascia after Shock Wave Therapy for Recalcitrant Plantar Fasciitis: A 12-Month Longitudinal Follow-up Study. Sci. Rep. 2020, 10, 2571. [Google Scholar] [CrossRef] [PubMed]
- Korta Martiartu, N.; Nambiar, S.; Nascimento Kirchner, I.; Paverd, C.; Cester, D.; Frauenfelder, T.; Ruby, L.; Rominger, M.B. Sources of Variability in Shear Wave Speed and Dispersion Quantification with Ultrasound Elastography: A Phantom Study. Ultrasound Med. Biol. 2021, 47, 3529–3542. [Google Scholar] [CrossRef]
- Sadeghi, S.; Cortes, D.H. Measurement of the Shear Modulus in Thin-Layered Tissues Using Numerical Simulations and Shear Wave Elastography. J. Mech. Behav. Biomed. Mater. 2020, 102, 103502. [Google Scholar] [CrossRef] [PubMed]
- Brum, J.; Gennisson, J.L.; Tanter, M.; Bernal, M.; Gennisson, J.L.; Tanter, M. In Vivo Evaluation of the Elastic Anisotropy of the Human Achilles Tendon Using Shear Wave Dispersion Analysis. Phys. Med. Biol. 2014, 59, 505–523. [Google Scholar] [CrossRef]
- Chen, T.L.W.; Agresta, C.E.; Lipps, D.B.; Provenzano, S.G.; Hafer, J.F.; Wong, D.W.C.; Zhang, M.; Zernicke, R.F. Ultrasound Elastographic Assessment of Plantar Fascia in Runners Using Rearfoot Strike and Forefoot Strike. J. Biomech. 2019, 89, 65–71. [Google Scholar] [CrossRef]
- Shiotani, H.; Yamashita, R.; Mizokuchi, T.; Sado, N.; Naito, M.; Kawakami, Y. Track Distance Runners Exhibit Bilateral Differences in the Plantar Fascia Stiffness. Sci. Rep. 2021, 11, 9260. [Google Scholar] [CrossRef] [PubMed]
- Shiotani, H.; Mizokuchi, T.; Yamashita, R.; Naito, M.; Kawakami, Y. Acute Effects of Long-Distance Running on Mechanical and Morphological Properties of the Human Plantar Fascia. Scand. J. Med. Sci. Sports 2020, 30, 1360–1368. [Google Scholar] [CrossRef]
- Hawkins, D.; Lum, C.; Gaydos, D.; Dunning, R. Dynamic Creep and Pre-Conditioning of the Achilles Tendon in-Vivo. J. Biomech. 2009, 42, 2813–2817. [Google Scholar] [CrossRef]
- Wearing, S.C.; Grigg, N.L.; Hooper, S.L.; Smeathers, J.E. Conditioning of the Achilles Tendon via Ankle Exercise Improves Correlations between Sonographic Measures of Tendon Thickness and Body Anthropometry. J. Appl. Physiol. 2011, 110, 1384–1389. [Google Scholar] [CrossRef]
- Ateş, F.; Hug, F.; Bouillard, K.; Jubeau, M.; Frappart, T.; Couade, M.; Bercoff, J.; Nordez, A. Muscle Shear Elastic Modulus Is Linearly Related to Muscle Torque over the Entire Range of Isometric Contraction Intensity. J. Electromyogr. Kinesiol. 2015, 25, 703–708. [Google Scholar] [CrossRef]
- Miller, K.S.; Edelstein, L.; Connizzo, B.K.; Soslowsky, L.J. Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon. J. Biomech. Eng. 2012, 134, 31007. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-L.; Zhou, J.-P.; Sun, P.-T.; Chen, B.-Z.; Zhang, J.; Tang, C.-Z.; Zhang, Z.-J. Influence of Different Knee and Ankle Ranges of Motion on the Elasticity of Triceps Surae Muscles, Achilles Tendon, and Plantar Fascia. Sci. Rep. 2020, 10, 6643. [Google Scholar] [CrossRef] [PubMed]
- Taş, S.; Bek, N.; Ruhi Onur, M.; Korkusuz, F. Effects of Body Mass Index on Mechanical Properties of the Plantar Fascia and Heel Pad in Asymptomatic Participants. Foot Ankle Int. 2017, 38, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Chino, K.; Lacourpaille, L.; Sasahara, J.; Suzuki, Y.; Hug, F. Effect of Toe Dorsiflexion on the Regional Distribution of Plantar Fascia Shear Wave Velocity. Clin. Biomech. 2019, 61, 11–15. [Google Scholar] [CrossRef]
- Radwan, A.; Wyland, M.; Applequist, L.; Bolowsky, E.; Klingensmith, H.; Virag, I. Ultrasonography, An Effective Tool in Diagnosing Plantar Fasciitis: A Systematic Review of Diagnostic Trials. Int. J. Sports Phys. Ther. 2016, 11, 663–671. [Google Scholar] [PubMed]
- Knudson, D. Significant and Meaningful Effects in Sports Biomechanics Research. Sports Biomech. 2009, 8, 96–104. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A.; Axel, B. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Overholser, B.R.; Sowinski, K.M. Biostatistics Primer: Part 2. Nutr. Clin. Pract. 2008, 23, 76–84. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Ding, X.; Wang, L.; Fan, Y. Biomechanical and Mechanical Behavior of the Plantar Fascia in Macro and Micro Structures. J. Biomech. 2018, 76, 160–166. [Google Scholar] [CrossRef]
- Pavan, P.G.; Pachera, P.; Stecco, C.; Natali, A.N. Constitutive Modeling of Time-Dependent Response of Human Plantar Aponeurosis. Comput. Math. Methods Med. 2014, 2014, 530242. [Google Scholar] [CrossRef]
- Naemi, R.; Chatzistergos, P.E.; Chockalingam, N. A Mathematical Method for Quantifying in Vivo Mechanical Behaviour of Heel Pad under Dynamic Load. Med. Biol. Eng. Comput. 2015, 54, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Maganaris, C.N. Tendon Conditioning: Artefact or Property? Proc. Biol. Sci. 2003, 270 (Suppl. 1), S39–S42. [Google Scholar] [CrossRef] [PubMed]
Imaging Site | ||||
---|---|---|---|---|
Proximal | Middle | Distal | ||
Condition | Baseline | 3.0 (5.1, 2.5) | 1.7 (3.0, 0.7) | 1.5 (1.9, 0.8) |
Walking | 3.2 (5.4, 2.4) | 1.7 (2.2,1.1) | 1.3 (1.8, 0.8) * | |
Jumping | 3.2 (4.7, 2.1) | 1.7 (3.0, 0.7) | 1.5 (2.2, 0.9) | |
Passive extensions | 3.3 (5.0, 2.1) | 1.7 (2.7, 1.2) | 1.4 (1.9, 0.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costello, C.; Chatzistergos, P.; Branthwaite, H.; Chockalingam, N. The Importance of Preconditioning for the Sonographic Assessment of Plantar Fascia Thickness and Shear Wave Velocity. Sensors 2024, 24, 4552. https://doi.org/10.3390/s24144552
Costello C, Chatzistergos P, Branthwaite H, Chockalingam N. The Importance of Preconditioning for the Sonographic Assessment of Plantar Fascia Thickness and Shear Wave Velocity. Sensors. 2024; 24(14):4552. https://doi.org/10.3390/s24144552
Chicago/Turabian StyleCostello, Conor, Panagiotis Chatzistergos, Helen Branthwaite, and Nachiappan Chockalingam. 2024. "The Importance of Preconditioning for the Sonographic Assessment of Plantar Fascia Thickness and Shear Wave Velocity" Sensors 24, no. 14: 4552. https://doi.org/10.3390/s24144552
APA StyleCostello, C., Chatzistergos, P., Branthwaite, H., & Chockalingam, N. (2024). The Importance of Preconditioning for the Sonographic Assessment of Plantar Fascia Thickness and Shear Wave Velocity. Sensors, 24(14), 4552. https://doi.org/10.3390/s24144552