Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume
">
">
">
">
">
"> Figure 1
<p>Signaling mechanism in polyNIPAM particle indicators. (<b>a</b>) Cross-linked polyNIPAM particles are functionalized with a Cu(II) binding ligand and a fluorophore pair capable of undergoing FRET. (<b>b</b>) If the Cu(II) binding ligand carries a negative charge, metal ion binding neutralizes the charge causing the particles to shrink, which decreases the distance between the donor and acceptor fluorophores and increases FRET. (<b>c</b>) When a neutral Cu(II) binding ligand is incorporated into the particles, the introduction of charge on the polymer backbone causes the particles to swell. The increased distance between the donor and acceptor fluorophores leads to decreases in FRET.</p> "> Figure 2
<p>SEM images of polyNIPAM polymer indicators. (<b>a</b>) Indicator <b>3</b> containing neutral bipyridine ligand. (<b>b</b>) Indicator <b>4</b> containing iminodiactate esters.</p> "> Figure 3
<p>Changes in emission ratio due to FRET in a charged carboxylate ligand (<b>5</b>) <span class="html-italic">vs.</span> an uncharged ester (<b>4</b>) polyNIPAM indicator as a function of temperature. Cu(II) binding neutralizes charge on the polymer backbone of <b>5</b>, which contain negatively charged carboxylate groups, and causes emission ratio changes that closely resemble that of <b>5</b>, which contains neutral ester groups.</p> "> Figure 4
<p>Emission Intensity ratio <span class="html-italic">vs.</span> [Cu(II)] for indicator <b>3</b> at 25 and 50 °C (MOPS, pH 6.0). The decrease in emission ratio is consistent with reduced FRET as particles swell when charge is introduced on the polymer backbone by bound Cu(II).</p> "> Figure 5
<p>Emission Intensity ratio <span class="html-italic">vs.</span> [Cu(II)] for indicator <b>5</b> at 25 and 50 °C (MOPS, pH 6.0). The increase in emission ratio is consistent with reduced FRET as particles contract as the ligand charge is neutralized on the polymer backbone by Cu(II) binding.</p> "> Figure 6
<p>Synthesis of <b>2</b>.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Ligand Synthesis
2.1.1. Materials and Methods
2.1.2. [Tert-butoxycarbonyl methyl-(3-vinyl-phenyl)-amino] acetic acid tert-butyl ester (2)
2.2. Polymer Synthesis
2.2.1. Materials and Methods
2.2.2. Poly(N-isopropylacrylamide-co-N-((4-methyl-2,2-bipyridine-4-yl)methyl)-N-propyl-acrylamide) Labeled with NMA and VAN (3)
2.2.3. Poly(N-isopropylacrylamide-co-tert-butoxycarbonylmethyl-(3-vinyl-phenyl)amino)-acetic acid tert-butyl ester) Labeled with NMA and VAN (4)
2.2.4. Poly(N-isopropylacrylamide-co-carboxymethyl-(3-vinyl-phenyl)amino)-acetic acid) Labeled with NMA and VAN (5)
2.3. Spectroscopic Methods
2.3.1. Microparticle Morphology
2.3.2. Fluorescence Titration of 3 with Cu(II)
2.3.3. Fluorescence Titration of 5 with Cu(II)
2.3.4. Potentiometric Titration of 3 with Cu(II) and Determination of Formation Constants (Kf)
2.3.5. Potentiometric Titration of 5 with Cu(II) and Determination of Formation Constants (Kf)
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- Meyer, J.S. Effects of Water Chemistry on the Bioavailability and Toxicity of Waterborne Cadmium, Copper, Nickel, Lead, and Zinc to Freshwater Organisms; Society of Environmental Toxicology and Chemistry; SETAC Press: Pensacola, FL, USA, 2007. [Google Scholar]
- Paquin, P.R.; Gorsuch, J.W.; Apte, S.; Batley, G.E.; Bowles, K.C.; Campbell, P.G.C.; Delos, C.G.; Di Toro, D.M.; Dwyer, R.L.; Galvez, F.; et al. The biotic ligand model: A historical overview. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 133, 3–35. [Google Scholar]
- Paquin, P.R.; Santore, R.C.; Wu, K.B.; Anid, P.J.; Kavvadas, C.D.; di Toro, D.M. Revisiting the aquatic impacts of copper discharged by water-cooled copper alloy condensers used by power and desalination plants. Environ. Sci. Pol. 2000, 3, 165–174. [Google Scholar]
- Palmer, A.E.; Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protocol. 2006, 1, 1057–1065. [Google Scholar]
- McCranor, B.J.; Bozym, R.A.; Vitolo, M.I.; Fierke, C.A.; Bambrick, L.; Polster, B.M.; Fiskum, G.; Thompson, R.B. Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J. Bioenerg. Biomembr. 2012, 44, 253–263. [Google Scholar]
- Du, J.; Yao, S.J.; Seitz, W.R.; Bencivenga, N.E.; Massing, J.O.; Planalp, R.P.; Jackson, R.K.; Kennedy, D.P.; Burdette, S.C. A ratiometric fluorescent metal ion indicator based on dansyl labeled poly(n-isopropylacrylamide) responds to a quenching metal ion. Analyst 2011, 136, 5006–5011. [Google Scholar]
- Liu, T.; Hu, J.M.; Yin, J.; Zhang, Y.F.; Li, C.H.; Liu, S.Y. Enhancing detection sensitivity of responsive microgel-based Cu(II) chemosensors via thermo-induced volume phase transitions. Chem. Mater. 2009, 21, 3439–3446. [Google Scholar]
- Liu, Y.H.; Meng, L.Z.; Lu, X.J.; Zhang, L.F.; He, Y.B. Thermo and pH sensitive fluorescent polymer sensor for metal cations in aqueous solution. Polymer. Adv. Technol. 2008, 19, 137–143. [Google Scholar]
- Yao, S.; Jones, A.M.; Du, J.; Jackson, R.K.; Massing, J.O.; Kennedy, D.P.; Bencivenga, N.E.; Planalp, R.P.; Burdette, S.C.; Seitz, W.R. Intermolecular approach to metal ion indicators based on polymer phase transitions coupled to fluorescence resonance energy transfer. Analyst 2012, 137, 4734–4741. [Google Scholar]
- Yin, J.; Guan, X.F.; Wang, D.; Liu, S.Y. Metal-chelating and dansyl-labeled poly(n-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity. Langmuir 2009, 25, 11367–11374. [Google Scholar]
- Yin, J.; Li, C.H.; Wang, D.; Liu, S.Y. Fret-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(n-isopropylacrylamide) microgels labeled with crown ether moieties. J. Phys. Chem. B 2010, 114, 12213–12220. [Google Scholar]
- Schild, H.G. Poly (n-isopropylacrylamide)—Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar]
- Kim, J.S.; Ligler, F.S. Utilization of microparticles in next-generation assays for microflow cytometers. Anal. Bioanal. Chem. 2010, 398, 2373–2382. [Google Scholar]
- Birtwell, S.; Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol. 2009, 1, 345–362. [Google Scholar]
- Seitz, W.R.; Rooney, M.T.V.; Miele, E.W.; Wang, H.M.; Kaval, N.; Zhang, L.; Doherty, S.; Milde, S.; Lenda, J. Derivatized, swellable polymer microspheres for chemical transduction. Anal. Chim. Acta 1999, 400, 55–64. [Google Scholar]
- Moore, E.G.; Bernhardt, P.V.; Riley, M.J.; Smith, T.A. Electronic energy-transfer rate constants for geometrical isomers of a bichromophoric macrocyclic complex. Inorg. Chem. 2006, 45, 51–58. [Google Scholar]
- Encinas, M.V.; Rufs, A.M.; Bertolotti, S.G.; Previtali, C.M. Xanthene dyes/amine as photoinitiators of radical polymerization: A comparative and photochemical study in aqueous medium. Polymer 2009, 50, 2762–2767. [Google Scholar]
- Li, G.; Zhu, X.; Cheng, Z.; Zhang, W.; Sun, B. Synthesis of poly(methyl methacrylate) labeled with fluorescein moieties via atom transfer radical polymerization. J. Macromol. Sci. Pure Appl. Chem. 2008, 45, 328–334. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Osambo, J.; Seitz, W.R.; Kennedy, D.P.; Planalp, R.P.; Jones, A.M.; Jackson, R.K.; Burdette, S. Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume. Sensors 2013, 13, 1341-1352. https://doi.org/10.3390/s130101341
Osambo J, Seitz WR, Kennedy DP, Planalp RP, Jones AM, Jackson RK, Burdette S. Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume. Sensors. 2013; 13(1):1341-1352. https://doi.org/10.3390/s130101341
Chicago/Turabian StyleOsambo, John, W. Rudolf Seitz, Daniel P. Kennedy, Roy P. Planalp, Aaron M. Jones, Randy K. Jackson, and Shawn Burdette. 2013. "Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume" Sensors 13, no. 1: 1341-1352. https://doi.org/10.3390/s130101341
APA StyleOsambo, J., Seitz, W. R., Kennedy, D. P., Planalp, R. P., Jones, A. M., Jackson, R. K., & Burdette, S. (2013). Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume. Sensors, 13(1), 1341-1352. https://doi.org/10.3390/s130101341