Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles
<p>The characteristics of Ag NPs. (<b>a</b>) UV-Vis spectrum of Ag nanoparticles (NPs) as prepared. (<b>b</b>) Transmission electron microscope (TEM) image of Ag NPs as prepared. (<b>c</b>) Particle size distribution of Ag NPs (<b>d</b>) TEM image of Ag NPs after the addition of trichloroacetic acid (TCA).</p> "> Figure 2
<p>The Raman spectra of the samples. (<b>a</b>) NaSCN solid powders. (<b>b</b>) TCA, a mixed solution of TCA and Ag NPs, a mixed solution of NaSCN and Ag NPs, a mixed solution of NaSCN, TCA and Ag NPs.</p> "> Figure 3
<p>The relationship between surface-enhanced Raman scattering (SERS) spectra and the reaction time (repeated three times). (<b>a</b>) SERS spectra with different reaction times. (<b>b</b>) The relation curve between Raman spectra intensity (2126 cm<sup>−1</sup>) and the reaction time.</p> "> Figure 4
<p>The SERS Detection of NaSCN in an aqueous solution (repeated three times). (<b>a</b>) The SERS spectra of NaSCN aqueous solution with different concentrations. (<b>b</b>) The relation curve between the intensity of SERS at 2126 cm<sup>−1</sup> and the concentration of NaSCN. (<b>c</b>) The SERS spectrum of 1 mg/L NaSCN aqueous solution and conventional Raman spectrum of 10<sup>4</sup> mg/L NaSCN aqueous solution.</p> "> Figure 5
<p>The SERS detection of NaSCN in the milk (repeated three times). (<b>a</b>) SERS spectra of the milk mixed with different concentrations of NaSCN. (<b>b</b>) The relation curve between the intensity of SERS at 2126 cm<sup>−1</sup> and the concentration of NaSCN.</p> "> Figure 6
<p>The SERS spectra of three kinds of commercial milk samples and spiked milk.</p> "> Figure 7
<p>The detection of NaSCN in the milk via UV-visible absorption spectrometry (repeated three times). (<b>a</b>) UV-visible absorption of NaSCN with different concentrations in the milk. (<b>b</b>) The relation curve between the absorption at 450 nm and the concentration of NaSCN.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Ag NPs
2.3. Observation of Ag NPs
2.4. Preparation of the Samples
2.5. Detection of NaSCN with SERS
2.6. Detection of NaSCN with UV-Visible Absorption
3. Results and Discussions
3.1. Characterization of Ag NPs
3.2. SERS Detection of NaSCN
3.3. SERS Detection of NaSCN in Aqueous Solution
3.4. SERS Detection of NaSCN in Spiked Milk Samples
3.5. Determination of NaSCN in Milk by UV-Visible Absorption Spectrometry
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirman, C.R.; Belknap, A.M.; Webster, A.F.; Hays, S.M. Biomonitoring Equivalents for cyanide. Regul. Toxicol. Pharmacol. 2018, 97, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.; Dunkel, A.; Wenning, M.; Kohler, B.; Medard, G.; del Castillo, E.; Gholami, A.; Kuster, B.; Scherer, S.; Hofmann, T. Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli. J. Agric. Food Chem. 2018, 66, 5621–5634. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R.; Abrahamse, H. Inorganic Salts and Antimicrobial Photodynamic Therapy: Mechanistic Conundrums? Molecules 2018, 23, 3190. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.J.; Wang, H.Y.; Zheng, C.W.; Zhao, G. One-pot synthesis of (ethoxycarbonyl)difluoromethylthioethers from thiocyanate sodium and ethyl 2-(trimethylsilyl)-2,2-difluoroacetate (TMS-CF2CO2Et). Tetrahedron 2017, 73, 6057–6066. [Google Scholar] [CrossRef]
- Abbes, C.; Mansouri, A.; Landoulsi, A. Synergistic Effect of the Lactoperoxidase System and Cinnamon Essential Oil on Total Flora and Salmonella Growth Inhibition in Raw Milk. J. Food Qual. 2018. [Google Scholar] [CrossRef]
- Yong, L.; Wang, Y.B.N.; Yang, D.; Liu, Z.; Abernethy, G.; Li, J. Investigation of concentration of thiocyanate ion in raw cow’s milk from China, New Zealand and the Netherlands. Food Chem. 2017, 215, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.M.; Braverman, L.E.; He, X.M.; Schuller, K.E.; Roussilhes, A.; Jahreis, K.A.; Pearce, E.N. Environmental Perchlorate and Thiocyanate Exposures and Infant Serum Thyroid Function. Thyroid 2012, 22, 938–943. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, P.K.; Kirk, A.B.; Dyke, J.V.; Ohira, S.I. Intake of Iodine and Perchlorate and Excretion in Human Milk. Environ. Sci. Technol. 2008, 42, 8115–8121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wu, Q.; Sun, H.W.; Rao, J.; Kannan, K. Perchlorate and Iodide in Whole Blood Samples from Infants, Children, and Adults in Nanchang, China. Environ. Sci. Technol. 2010, 44, 6947–6953. [Google Scholar] [CrossRef]
- Pearce, E.N.; Alexiou, M.; Koukkou, E.; Braverman, L.E.; He, X.M.; Ilias, I.; Alevizaki, M.; Markou, K.B. Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women from Greece. Clin. Endocrinol. 2012, 77, 471–474. [Google Scholar] [CrossRef]
- Blount, B.C.; Valentin-Blasini, L. Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry. Anal. Chim. Acta 2006, 567, 87–93. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, J.; Wang, H.Y. Microchip-Based Surface Enhanced Raman Spectroscopy for the Determination of Sodium Thiocyanate in Milk. Anal. Lett. 2015, 48, 1930–1940. [Google Scholar] [CrossRef]
- Lin, X.; Hasi, W.L.J.; Lou, X.T.; Lin, S.; Yang, F.; Jia, B.S.; Cui, Y.; Ba, D.X.; Lin, D.Y.; Lu, Z.W. Rapid and simple detection of sodium thiocyanate in milk using surface-enhanced Raman spectroscopy based on silver aggregates. J. Raman Spectrosc. 2014, 45, 162–167. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Liang, F.H.; Wang, D.; Ma, P.Y.; Gao, D.J.; Han, J.Y.; Li, Y.L.; Yu, A.M.; Song, D.Q.; Wang, X.H. Simultaneous determination of thiocyanate ion and melamine in milk and milk powder using surface-enhanced Raman spectroscopy. Anal. Methods 2014, 6, 8388–8395. [Google Scholar] [CrossRef]
- Tan, Z.; Lou, T.T.; Huang, Z.X.; Zong, J.; Xu, K.X.; Li, Q.F.; Chen, D. Single-Drop Raman Imaging Exposes the Trace Contaminants in Milk. J. Agric. Food Chem. 2017, 65, 6274–6281. [Google Scholar] [CrossRef]
- Dong, W.L.; Xu, G. Spectrophotometic Determination of Trace Zinc in Milk Powder by Ethyl Rhodamine B. Asian J. Chem. 2014, 26, 5432–5434. [Google Scholar] [CrossRef]
- Reguera, J.; Langer, J.; de Aberasturi, D.J.; Liz-Marzan, L.M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 2017, 46, 3866–3885. [Google Scholar] [CrossRef]
- Ding, S.Y.; Yi, J.; Li, J.F.; Ren, B.; Wu, D.Y.; Panneerselvam, R.; Tian, Z.Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Cialla-May, D.; Zheng, X.S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zong, S.F.; Wu, L.; Zhu, D.; Cui, Y.P. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem. Rev. 2017, 117, 7910–7963. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iati, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, P.; Liu, X.M.; Sun, X.; Li, H.; Lin, M.S. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. [Google Scholar] [CrossRef]
- Feng, J.Y.; Hu, Y.X.; Grant, E.; Lu, X.N. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018, 239, 816–822. [Google Scholar] [CrossRef]
- Li, J.L.; Sun, D.W.; Pu, H.B.; Jayas, D.S. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chem. 2017, 218, 543–552. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yu, W.S.; Pei, L.; Lai, K.Q.; Rasco, B.A.; Huang, Y.Q. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem. 2015, 169, 80–84. [Google Scholar] [CrossRef]
- Luo, H.R.; Huang, Y.Q.; Lai, K.Q.; Rasco, B.A.; Fan, Y.X. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control 2016, 68, 229–235. [Google Scholar] [CrossRef]
- Zheng, J.K.; He, L.L. Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Compr. Rev. Food Sci. Food Saf. 2014, 13, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-A.; Li, W.-E.; Lin, D.-Z.; Chen, Y.-F. Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Besemer, M.; Bloemenkamp, R.; Ariese, F.; van Manen, H.J. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water. J. Phys. Chem. A 2016, 120, 709–714. [Google Scholar] [CrossRef]
- Li, X.; Gewirth, A.A. Potential-dependent reorientation of thiocyanate on Au electrodes. J. Am. Chem. Soc. 2003, 125, 11674–11683. [Google Scholar] [CrossRef]
Methods | UV-Visible Absorption Spectrometry Absorbance (λ = 450 nm) | UV-Visible Absorption Spectrometry (mg/L) | SERS Detection (mg/L) | |
---|---|---|---|---|
Samples | ||||
Sample A | 0.011 ± 0.001 | <10 | <10 | |
Sample B | 0.006 ± 0.001 | <10 | <10 | |
Sample C | 0.051 ± 0.002 | <10 | <10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Mo, R.; Wang, L.; Zhou, C.; Hong, P.; Li, C. Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles. Sensors 2019, 19, 1363. https://doi.org/10.3390/s19061363
Feng Y, Mo R, Wang L, Zhou C, Hong P, Li C. Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles. Sensors. 2019; 19(6):1363. https://doi.org/10.3390/s19061363
Chicago/Turabian StyleFeng, Yanting, Rijian Mo, Ling Wang, Chunxia Zhou, Pengzhi Hong, and Chengyong Li. 2019. "Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles" Sensors 19, no. 6: 1363. https://doi.org/10.3390/s19061363
APA StyleFeng, Y., Mo, R., Wang, L., Zhou, C., Hong, P., & Li, C. (2019). Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles. Sensors, 19(6), 1363. https://doi.org/10.3390/s19061363