A Patch/Dipole Hybrid-Mode Antenna for Sub-6GHz Communication
<p>Geometry of the proposed antenna (<b>a</b>) side view, (<b>b</b>) perspective view, and (<b>c</b>) zoom in (part A: the feeding dipole, part B: the tapered line, and part C: both sides of the balun).</p> "> Figure 2
<p>The simulated electric field distribution of the proposed antenna without a feeding network and balun (remove the feeding network and balun, fed in the center of the feeding dipole by a lumped port) at (<b>a</b>) 3.0 GHz, (<b>b</b>) 4.0 GHz, and (<b>c</b>) 5.0 GHz.</p> "> Figure 3
<p>Simulated radiation patterns of the proposed antenna without a feeding network and balun at (<b>a</b>) <span class="html-italic">xoz</span> plane and (<b>b</b>) <span class="html-italic">yoz</span> plane.</p> "> Figure 4
<p>Photograph of the antenna prototype: (<b>a</b>) top view and (<b>b</b>) side view.</p> "> Figure 5
<p>The simulated and measured reflection coefficients and realized gains of the proposed antenna.</p> "> Figure 6
<p>Simulated and measured radiation patterns of the proposed antenna at (<b>a</b>) 3.0 GHz, (<b>b</b>) 4.0 GHz, and (<b>c</b>) 5.0 GHz.</p> ">
Abstract
:1. Introduction
2. Antenna Design and Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pozar, D.M.; Targonski, S.D. A Shared-Aperture Dual-Band Dual-Polarized Microstrip Array. IEEE Trans. Antennas Propag. 2001, 49, 150–157. [Google Scholar] [CrossRef]
- Qu, X.; Zhong, S.; Zhang, Y.; Wang, W. Design of an S/X dual-band dual-polarised microstrip antenna array for SAR applications. IET Microwav. Antennas Propag. 2007, 1, 513–517. [Google Scholar] [CrossRef]
- Mao, C.-X.; Gao, S.; Wang, Y.; Luo, Q.; Chu, Q.-X. A Shared-Aperture Dual-Band Dual-Polarized Filtering-Antenna-Array With Improved Frequency Response. IEEE Trans. Antennas Propag. 2017, 65, 1836–1844. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Shum, K.M.; Chan, C.H.; Luk, K.M.; Kong, H. Bandwidth Enhancement Technique for Quarter-Wave Patch Antennas. IEEE Antennas Wirel. Propag. Lett. 2003, 2, 130–132. [Google Scholar] [CrossRef]
- Ding, C.; Luk, K.M. Low-Profile Magneto-Electric Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1642–1644. [Google Scholar] [CrossRef]
- Luo, G.; Hu, Z.; Li, W.; Zhang, X.; Sun, L.; Zheng, J. Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes. IEEE Trans. Antennas Propag. 2012, 60, 1698–1704. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, Z. Dual-Band Shared-Aperture UHF/UWB RFID Reader Antenna of Circular Polarization. IEEE Trans. Antennas Propag. 2018, 66, 3886–3893. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, Z. Compact and High-Gain UHF/UWB RFID Reader Antenna. IEEE Trans. Antennas Propag. 2017, 65, 5002–5010. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, J.; Liu, Z.; Zhang, G.; Wu, F. Directed gain bandwidth enhancement in patch/slot hybrid antenna. In Proceedings of the Asia-Pacific Microwave Confenrence, Kyoto, Japan, 6–9 November 2018. [Google Scholar]
- Tang, H.; Zong, X.; Nie, Z. Broadband Dual-Polarized Base Station Antenna for Fifth-Generation (5G) Applications. Sensors 2018, 18, 2701. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liang, J.; Chen, X. Study of Printed Elliptical/Circular Slot Antennas for Ultrawideband Applications. IEEE Trans. Antennas Propag. 2006, 54, 1670–1675. [Google Scholar] [CrossRef]
- Guha, D.; Biswas, M.; Antar, Y.M.M. Microstrip Patch Antenna with Defected Ground Structure for Cross Polarization Suppression. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 455–458. [Google Scholar] [CrossRef]
- Mirmozafari, M.; Zhang, G.; Saeedi, S.; Doviak, R.J. A Dual Linear Polarization Highly Isolated Crossed Dipole Antenna for MPAR Application. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1879–1882. [Google Scholar] [CrossRef]
- Xue, Q.; Liao, S.; Xu, J. A Differentially-Driven Dual-Polarized Magneto-Electric Dipole Antenna. IEEE Trans. Antennas Propag. 2013, 61, 425–430. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, P.; Zhang, X.; Zheng, S. A Low-Profile High-Gain and Wideband Filtering Antenna with Metasurface. IEEE Trans. Antennas Propag. 2016, 64, 2010–2016. [Google Scholar] [CrossRef]
- Liu, N.-W.; Zhu, L.; Choi, W.-W.; Zhang, J.-D. A Low-Profile Differentially Fed Microstrip Patch Antenna With Broad Impedance Bandwidth Under Triple-Mode Resonance. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1478–1482. [Google Scholar] [CrossRef]
- Vallecchi, A.; De Luis, J.R.; Capolino, F.; De Flaviis, F. Low Profile Fully Planar Folded Dipole Antenna on a High Impedance Surface. IEEE Trans. Antennas Propag. 2012, 60, 51–62. [Google Scholar] [CrossRef]
Parameter | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | L12 | h1 | h2 |
Value (mm) | 100.00 | 130.00 | 1.20 | 5.20 | 5.20 | 5.80 | 29.40 | 35.00 | 1.60 | 6.80 | 3.20 | 11.40 | 1.60 | 1.60 |
Parameter | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | LS | WS | LP | WP | H |
Value (mm) | 100.00 | 130.00 | 3.20 | 0.50 | 2.92 | 8.00 | 3.00 | 0.50 | 0.42 | 30.75 | 8.35 | 33.75 | 29.25 | 10.00 |
Reference | Projection Size (λ0 × λ0) | Profile (λ0) | Bandwidth | Realized Gain (dBi) | Cross Polarization (dB) | Front-to-Back Ratio (dB) | HPBW (°) # | |
---|---|---|---|---|---|---|---|---|
xoz Plane | yoz Plane | |||||||
[5] | 0.93 × 0.51 | 0.097 | 28.2% | 9.2 ± 1.1 | −24.0 | 13.0 | 42.0 | 46.0 |
[14] | 0.62 × 0.62 | 0.24 | 68.0% | 8.1 ± 1.5 | −23.0 | 14.0 | 56.0 | 53.0 |
[15] | 0.82 × 0.69 | 0.06 | 28.4% | 8.2 ± 0.9 | −25.0 | 13.0 | 40.0 | 44.2 |
[16] | 1.02 × 1.31 | 0.06 | 55.0% | 7.0 ± 3.0 | −25.2 | 17.0 | 24.2 | 34.3 |
This work | 0.90 × 0.78 | 0.13 | 67.5% | 8.4 ± 1.1 * | −28.5 | 26.5 | 55.7 | 43.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Lin, W.; Huang, J.; Zhang, J.; Zhang, G.; Wu, F. A Patch/Dipole Hybrid-Mode Antenna for Sub-6GHz Communication. Sensors 2019, 19, 1358. https://doi.org/10.3390/s19061358
Huang B, Lin W, Huang J, Zhang J, Zhang G, Wu F. A Patch/Dipole Hybrid-Mode Antenna for Sub-6GHz Communication. Sensors. 2019; 19(6):1358. https://doi.org/10.3390/s19061358
Chicago/Turabian StyleHuang, Bei, Weifeng Lin, Jialu Huang, Jun Zhang, Gary Zhang, and Fugen Wu. 2019. "A Patch/Dipole Hybrid-Mode Antenna for Sub-6GHz Communication" Sensors 19, no. 6: 1358. https://doi.org/10.3390/s19061358
APA StyleHuang, B., Lin, W., Huang, J., Zhang, J., Zhang, G., & Wu, F. (2019). A Patch/Dipole Hybrid-Mode Antenna for Sub-6GHz Communication. Sensors, 19(6), 1358. https://doi.org/10.3390/s19061358