GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate
<p>(<b>a</b>) Mask layout with pad names (inset: micro-photograph image of fabricated device), (<b>b</b>) schematic circuit diagram, and (<b>c</b>) cross-sectional view of proposed GaN ultraviolet (UV) passive pixel sensor (PPS) structure.</p> "> Figure 2
<p>(<b>a</b>) Dark and photoresponsive I–V characteristics of the fabricated GaN metal-semiconductor-metal (MSM) photodetector under varying bias from −10 V to 10 V (forward direction) and from 10 V to −10 V (reverse direction). (<b>b</b>) Poole–Frenkel emission plot, (<b>c</b>) Schottky emission plot, and (<b>d</b>) Fowler–Nordheim tunneling plot of the I–V characteristics under dark and 365-nm UV irradiation conditions.</p> "> Figure 3
<p>Spectral photo-responsivity characteristics of the fabricated GaN MSM UV photodetector under varying (<b>a</b>) forward and (<b>b</b>) reverse bias conditions.</p> "> Figure 4
<p>(<b>a</b>) Output I<sub>DS</sub>–V<sub>DS</sub> characteristic under dark, (<b>b</b>) output I<sub>DS</sub>–V<sub>DS</sub> characteristic under 365-nm UV irradiation, and (<b>c</b>) linear and log-scale transfer I<sub>DS</sub>–V<sub>GS</sub> characteristics of the fabricated GaN Schottky-barrier (SB)-metal-oxide-semiconductor field-effect transistor (MOSFET).</p> "> Figure 5
<p>Transfer I<sub>DS</sub>–V<sub>GS</sub> characteristics of the fabricated GaN SB-MOSFET (<b>a</b>) under dark and (<b>b</b>) under 365-nm UV irradiation.</p> "> Figure 6
<p>Output I–V characteristics of the fabricated GaN UV PPS with/without UV irradiation under 0–10 V bias conditions. (Inset: linear scale output I–V characteristics).</p> ">
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Razeghi, M.; Rogalski, A. Semiconductor Ultraviolet Detectors. J. Appl. Phys. 1996, 79, 7433–7473. [Google Scholar] [CrossRef]
- Walker, D.; Razeghi, M. The Development of Nitride-based UV Photodetectors. Opto-Electron. Rev. 2000, 8, 25–42. [Google Scholar]
- Sandvik, P.; Mi, K.; Shahedipour, F.; McClintock, R.; Yasan, A.; Kung, P.; Razeghi, M. AlxGa1−xN for Solar-blind UV Detectors. J. Cryst. Growth 2001, 231, 366–370. [Google Scholar] [CrossRef]
- Butun, B.; Tut, T.; Ulker, E.; Yelboga, T.; Ozbay, E. High-performance Visible-blind GaN-based p-i-n Photodetectors. Appl. Phys. Lett. 2008, 92, 033507. [Google Scholar] [CrossRef]
- Wang, X.D.; Hu, W.D.; Chen, X.S.; Xu, J.T.; Li, X.Y.; Lu, W. Photoresponse Study of Visible Blind GaN/AlGaN p-i-n Ultraviolet Photodetector. Opt. Quant. Electron. 2011, 42, 755–764. [Google Scholar] [CrossRef]
- Lee, K.H.; Chang, P.C.; Chang, S.J.; Wu, S.L. GaN-based Schottky Barrier Ultraviolet Photodetector with a 5-pair AlGaN–GaN Intermediate Layer. Phys. Stat. Sol. A 2012, 209, 579–584. [Google Scholar] [CrossRef]
- Chuah, L.S.; Hassan, Z.; Hassan, H.A. Performance Improvement of Large Area GaN MSM Photodiode with Thin AlGaN Surface Layer. Microelectron. Int. 2010, 27, 140–142. [Google Scholar] [CrossRef]
- Li, D.; Sun, X.; Song, H.; Li, Z.; Jiang, H.; Chen, Y.; Miao, G.; Shen, B. Effect of Asymmetric Schottky Barrier on GaN-based Metal-semiconductor-metal Ultraviolet Detector. Appl. Phys. Lett. 2011, 99, 261102. [Google Scholar] [CrossRef]
- Xie, F.; Lu, H.; Chen, D.; Zhang, R.; Zheng, Y. GaN MSM Photodetectors Fabricated on Bulk GaN with Low Dark-current and High UV/visible Rejection Ratio. Phys. Stat. Sol. C 2011, 8, 2473–2475. [Google Scholar] [CrossRef]
- Lee, C.-J.; Won, C.-H.; Lee, J.-H.; Hahm, S.-H.; Park, H. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-graded AlxGa1−xN Buffer Layer. Sensors 2017, 17, 1684. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, P.E.; Duboz, J.-Y.; Moor, P.D.; John, J.; Minoglou, K.; Srivastava, P.; Semond, F.; Frayssinet, E.; Giordanengo, B.; BenMoussa, A.; et al. AlGaN-on-Si-Based 10-μm Pixel-to-Pixel Pitch Hybrid Imagers for the EUV Range. IEEE Electron Device Lett. 2011, 32, 1561–1563. [Google Scholar] [CrossRef]
- Sugiura, S.; Hayashi, Y.; Kishimoto, S.; Mizutani, T.; Kuroda, M.; Ueda, T.; Tanaka, T. Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator. Sol. Stat. Electron. 2010, 54, 79–83. [Google Scholar] [CrossRef]
- Im, K.-S.; Ha, J.-B.; Kim, K.-W.; Lee, J.S.; Kim, D.-S.; Hahm, S.-H.; Lee, J.-H. Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure with Extremely High 2DEG Density Grown on Silicon Substrate. IEEE Electron Device Lett. 2010, 31, 192–194. [Google Scholar]
- Kim, D.-S.; Im, K.-S.; Kim, K.-W.; Kang, H.-S.; Kim, D.-K.; Chang, S.J.; Bae, Y.; Hahm, S.-H.; Cristoloveanu, S.; Lee, J.-H. Normally-off GaN MOSFETs on insulating substrate. Sol. Stat. Electron. 2013, 90, 79–85. [Google Scholar] [CrossRef]
- Huang, W.; Khan, T.; Chow, T.P. Enhancement-Mode n-Channel GaN MOSFETs on p and n-GaN/Sapphire Substrates. IEEE Electron Device Lett. 2006, 27, 796–798. [Google Scholar] [CrossRef]
- Kambayashi, H.; Niiyama, Y.; Ootomo, S.; Nomura, T.; Iwami, M.; Satoh, Y.; Kato, S.; Yoshida, S. Normally Off n-Channel GaN MOSFETs on Si Substrates Using an SAG Technique and Ion Implantation. IEEE Electron Device Lett. 2007, 28, 1077–1079. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, D.-S.; Chang, S.J.; Lee, C.-J.; Bae, Y.; Cristoloveanu, S.; Lee, J.-H.; Hahm, S.-H. Performance of GaN Metal–Oxide–Semiconductor Field-Effect Transistor with Regrown n+-Source/Drain on a Selectively Etched GaN. Jpn. J. Appl. Phys. 2013, 52, 061001. [Google Scholar] [CrossRef]
- Lee, H.-B.; Cho, H.-I.; An, H.-S.; Bae, Y.-H.; Lee, M.-B.; Lee, J.-H.; Hahm, S.-H. A Normally Off GaN n-MOSFET With Schottky-Barrier Source and Drain on a Si-Auto-Doped p-GaN/Si. IEEE Electron Device Lett. 2006, 27, 81–83. [Google Scholar]
- Kim, D.-S.; Kim, T.-H.; Won, C.-H.; Kang, H.-S.; Kim, K.-W.; Im, K.-S.; Lee, Y.S.; Hahm, S.-H.; Lee, J.-H.; Lee, J.-H.; et al. Performance enhancement of GaN SB-MOSFET on Si substrate using two-step growth method. Microelectron. Eng. 2011, 88, 1221–1224. [Google Scholar] [CrossRef]
- Kwak, E.H.; Kim, D.S.; Won, C.H.; Kim, K.W.; Kim, S.N.; Jung, S.D.; Kim, R.H.; Lee, S.G.; Im, K.S.; Yang, C.M.; et al. Growth of AlGaN/GaN Heterostructure on Si (111) Substrates with High-temperature Step-graded AlGaN buffer-layers. In Proceedings of the 18th Korean Semiconductor Conference, Jeju, Korea, 21–26 Febuary 2011. [Google Scholar]
- Klein, P.B.; Binari, S.C.; Freitas, J.A.; Wickenden, A.E. Photoionization spectroscopy of traps in GaN metal-semiconductor field-effect transistors. J. Appl. Phys. 2000, 88, 2843. [Google Scholar] [CrossRef]
- Klein, P.B.; Binari, S.C. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors. J. Phys. Condens. Matter 2003, 15, R1641–R1667. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-J.; Won, C.-H.; Lee, J.-H.; Hahm, S.-H.; Park, H. GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate. Sensors 2019, 19, 1051. https://doi.org/10.3390/s19051051
Lee C-J, Won C-H, Lee J-H, Hahm S-H, Park H. GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate. Sensors. 2019; 19(5):1051. https://doi.org/10.3390/s19051051
Chicago/Turabian StyleLee, Chang-Ju, Chul-Ho Won, Jung-Hee Lee, Sung-Ho Hahm, and Hongsik Park. 2019. "GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate" Sensors 19, no. 5: 1051. https://doi.org/10.3390/s19051051