Resonant Photoacoustic Spectroscopy of NO2 with a UV-LED Based Sensor †
"> Figure 1
<p>The emission spectrum of the used UV-LED with a peak wavelength of 405 nm. The datasheet states a spectral bandwidth of 15 nm [<a href="#B8-sensors-19-00724" class="html-bibr">8</a>]. The LED spectrum fits well to the absorption maximum of NO<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math> [<a href="#B9-sensors-19-00724" class="html-bibr">9</a>].</p> "> Figure 2
<p>(<b>a</b>) Schematic drawing: Diverging LED light within a non-optimized resonant cell similar to that proposed in Ref. [<a href="#B5-sensors-19-00724" class="html-bibr">5</a>]. The light hits the inner walls at the red dashed line, causing the background signal. The lower signal to offset ratio results in a worse limit of detection and stability problems. (<b>b</b>) Concept for use of LED light. The T-cell consists of an absorption chamber that enables the non-contact feedthrough of the beam. Perpendicular to it there is the resonance cylinder, where the standing wave pattern is formed.</p> "> Figure 3
<p>(<b>a</b>) Cross section of the cell with simulated pressure amplitude corresponding to standing wave patterns of different harmonics. One can observe the first harmonic at 1850 Hz, the third harmonic at 4170 Hz and the fifth at 6710 Hz. Pressure peaks (red) are at the spot, where the microphone will be assembled. As expected, no standing wave pattern is formed within the absorption chamber. (<b>b</b>) Picture of the aluminum cell with mounted microphone and windows (100 mm × 40 mm × 40 mm).</p> "> Figure 4
<p>(<b>a</b>) Sensor setup in principle. (<b>b</b>) Picture of the setup with optical components mounted in a Thorlabs cage system (100 mm × 40 mm × 750 mm).</p> "> Figure 5
<p>Frequency response of the resonant photoacoustic cell with peaks of different harmonics: 3rd at 3727 Hz, 5th at 6275 Hz, 7th at 8635 Hz. The 3rd harmonic gives the best signal and has a Q-factor of around 12.4.</p> "> Figure 6
<p>(<b>a</b>) Lock-in filtered microphone signal (integration time of 1.14 s) while sweeping the LED modulation frequency over the third harmonic of the resonator at different NO<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math> concentrations. A reading is taken every 0.75 s. The resonance frequency shift is due to the dilution of NO<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math> in synthetic air. (<b>b</b>) Mean value of the three highest points of the sweep, together with their standard deviation (<math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>1</mn> <mspace width="0.166667em"/> <mi>σ</mi> </mrow> </semantics> </math>) and the linear correlation.</p> "> Figure 7
<p>Time resolved gas measurement result of the photoacoustic sensor normalized to the zero concentration. Due to the sweep over the complete resonance peak the data rate is around 0.25 min<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>. The noise analysis showed a noise equivalent (1 <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math>) of approximately 32 ppb. Therefore the sensor can detect concentrations of around 200 ppb with 6 <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> confidence.</p> "> Figure 8
<p>Calculated Allan deviation of the ambient air signal over a measuring time of 72 h. The left axis shows the Allan deviation in counts. On the right axis it is converted into ppb using the sensors sensitivity of 125 counts per ppm.</p> "> Figure A1
<p>Measurement with the same setup but with a H-cell similar to the work of El-Safoury et al. [<a href="#B14-sensors-19-00724" class="html-bibr">14</a>]. The H-cell has a resonator length of 40 mm and a diameter of 3 mm. The buffer volumina have both a diameter and a length of 20 mm. In this setup, the offset is equivalent to 65.4 ppm NO<math display="inline"> <semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics> </math>. Due to the high offset, the zero gas signal is more vulnerable to drift effects and therefore less stable.</p> ">
Abstract
:1. Introduction
2. Design and Methods
2.1. Sensor Design
2.2. NO Gas Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ppm | parts per million |
ppb | parts per billion |
PA | photoacoustic |
PAS | photoacoustic spectroscopy |
LOD | limit of detection |
FEM | finite elements method |
MA | modal acoustics |
HA | harmonic acoustics |
SNR | signal to noise ratio |
Appendix A
References
- Bliefert, C. Umweltchemie, 3rd ed.; Wiley: Weinheim, Germany, 2012. [Google Scholar]
- U.S. Environmental Protection Agency. Our Nation’s Air: Status and Trends through 2008; 454/R-09-002; U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Shorter, J.H.; Herndon, S.; Zahniser, M.S.; Nelson, D.D.; Wormhoudt, J.; Demerjian, K.L.; Kolb, C.E. Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle. Environ. Sci. Technol. 2005, 39, 7991–8000. [Google Scholar] [CrossRef] [PubMed]
- Kuykendall, J.R.; Shaw, S.L.; Paustenbach, D.; Fehling, K.; Kacew, S.; Kabay, V. Chemicals present in automobile traffic tunnels and the possible community health hazards: A review of the literature. Inhal. Toxicol. 2009, 21, 747–792. [Google Scholar] [CrossRef] [PubMed]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef]
- Santiago, G.D.; González, M.G.; Peuriot, A.L.; González, F.; Slezak, V.B. Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2. Rev. Sci. Instrum. 2006, 77, 023108. [Google Scholar] [CrossRef]
- Saarela, J.; Sorvajärvi, T.; Laurila, T.; Toivonen, J. Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs. Opt. Express 2011, 19 (Suppl. 4), A725–A732. [Google Scholar] [CrossRef] [PubMed]
- Würth Elektronik GmbH & Co. WL-SUMW SMD Ultraviolet Ceramic Waterclear. Available online: https://katalog.we-online.de/de/led/WL-SUMW/15335338AA350vs_ct:1 (accessed on 18 January 2019).
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.; Vogel, A.; Hartmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Lassen, M.; Balslev-Clausen, D.; Brusch, A.; Petersen, J.C. A versatile integrating sphere based photoacoustic sensor for trace gas monitoring. Opt. Express 2014, 22, 11660–11669. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Kost, B.; Groninga, H.; Wolff, M. Eigenmodes of Photoacoustic T-Cells. In Proceedings of the 2005 FEMLAB Conference, Frankfurt, Germany, 2–4 November 2005; pp. 231–236. [Google Scholar]
- Liu, L.; Mandelis, A.; Huan, H.; Michaelian, K.; Melnikov, A. Step scan T-cell Fourier-transform infrared photoacoustic spectroscopy (FTIR-PAS) for detection of ambient air contaminants. Vib. Spectrosc. 2016, 87, 94–98. [Google Scholar] [CrossRef]
- Weber, C.; Kapp, J.; Schmitt, K.; Pernau, H.F.; Wöllenstein, J. Resonant Photoacoustic Detection of NO2 with an LED Based Sensor. Proceedings 2018, 2, 1036. [Google Scholar] [CrossRef]
- El-Safoury, M.; Dufner, M.; Weber, C.; Schmitt, K.; Pernau, H.F.; Willing, B.; Wöllenstein, J. Resonant Photoacoustic Gas Monitoring of Combustion Emissions. Proceedings 2018, 2, 962. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapp, J.; Weber, C.; Schmitt, K.; Pernau, H.-F.; Wöllenstein, J. Resonant Photoacoustic Spectroscopy of NO2 with a UV-LED Based Sensor. Sensors 2019, 19, 724. https://doi.org/10.3390/s19030724
Kapp J, Weber C, Schmitt K, Pernau H-F, Wöllenstein J. Resonant Photoacoustic Spectroscopy of NO2 with a UV-LED Based Sensor. Sensors. 2019; 19(3):724. https://doi.org/10.3390/s19030724
Chicago/Turabian StyleKapp, Johannes, Christian Weber, Katrin Schmitt, Hans-Fridtjof Pernau, and Jürgen Wöllenstein. 2019. "Resonant Photoacoustic Spectroscopy of NO2 with a UV-LED Based Sensor" Sensors 19, no. 3: 724. https://doi.org/10.3390/s19030724
APA StyleKapp, J., Weber, C., Schmitt, K., Pernau, H. -F., & Wöllenstein, J. (2019). Resonant Photoacoustic Spectroscopy of NO2 with a UV-LED Based Sensor. Sensors, 19(3), 724. https://doi.org/10.3390/s19030724