Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management
<p>Role of unmanned aerial vehicle (UAV) within Internet of Things (IoT) as: (<b>a</b>) smart terminal devices that interact with the physical world; (<b>b</b>) aerial base stations and gateways; (<b>c</b>) communication network connected to IoT cloud.</p> "> Figure 2
<p>UAV traffic management (UTM) facilitating communication between main stakeholders [<a href="#B22-sensors-19-04779" class="html-bibr">22</a>].</p> "> Figure 3
<p>Proposed multilayer UTM model of the Class G airspace [<a href="#B22-sensors-19-04779" class="html-bibr">22</a>].</p> "> Figure 4
<p>Total System Error of a UAV [<a href="#B22-sensors-19-04779" class="html-bibr">22</a>].</p> "> Figure 5
<p>Airways and Nodes in proposed UTM model [<a href="#B22-sensors-19-04779" class="html-bibr">22</a>].</p> "> Figure 6
<p>Communicated messages in a distributed and centralised UTM [<a href="#B15-sensors-19-04779" class="html-bibr">15</a>].</p> "> Figure 7
<p>Example of a 75-Node three layer network and its adjacency matrix.</p> "> Figure 8
<p>Impact on traffic performance by varying <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </semantics></math> in GPD (50%, 80%, 100%).</p> "> Figure 9
<p>Impact on mixed objective traffic performance by varying <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> </mrow> </msub> </semantics></math> in GPD (50%, 80%, 100%).</p> "> Figure 10
<p>Impact on traffic performance by varying <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>l</mi> </msub> <mi>i</mi> <mi>m</mi> </mrow> </semantics></math> in Local Pheromone Guided (LPG) (80%, 50%, 0%).</p> "> Figure 11
<p>Performance comparison of Global Offline Static (GOS), GPD and LPG.</p> ">
Abstract
:1. Introduction
- emphasising on the role of UAVs within IoT;
- providing a broader state of the art analysis;
- extending the UTM model description with UAV communication;
- considering more realistic experimental scenarios.
2. State of the Art
2.1. Multilayer Networks
2.2. UAV Traffic Management
2.3. Distributed Path Planning
3. Multilayer UTM Model
3.1. Class G Airspace Multilayer Model
3.2. Multilayer Network Model
3.3. UAV Communication
3.4. Operational Example
4. UAV Traffic Optimisation
4.1. Energy-Aware Path Optimisation
- P—objective function (energy consumed),
- T—objective function (time elapsed),
- I—number of UAVs,
- i—index for UAVs,
- L—number of airways,
- l—index for airways,
- a—selection indicator for airways/UAVs (),
- e—energy consumption component for airways,
- t—time elapse component for airways,
- c—traffic capacity for airways,
- —maximum traffic capacity for airways.
4.2. Optimisation Approach
4.2.1. Global Offline Static—UTM (GOS)
4.2.2. Global Probabilistic Dynamic—UTM (GPD)
4.2.3. Local Pheromone Guided—UTM (LPG)
5. Simulation and Results
5.1. Experimental Setup
5.2. Results
5.2.1. Experiment 1: Impact of on GPD Performance
5.2.2. Experiment 2: Impact of on LPG Performance
5.2.3. Experiment 3: Performance Comparison of GOS, GPD and LPG
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Samir Labib, N.; Liu, C.; Dilmaghani, S.; Brust, M.R.; Danoy, G.; Bouvry, P. White Paper: Data Protection and Privacy in Smart ICT-Scientific Research and Technical Standardization; Technical Report; ILNAS—University of Luxembourg: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Hu, J.; Shi, X.; Hua, S.; Yue, J.; Xu, Z.; Yang, G. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform. Sensors 2019, 19, 3106. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Zhang, M.; Bian, D.; Liu, Z.; Huang, J.; Wang, W.; Wu, J.; Guo, H. Phenotyping of Corn Plants Using Unmanned Aerial Vehicle (UAV) Images. Remote Sens. 2019, 11, 2021. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Blanco-Novoa, O.; Froiz-Míguez, I.; Fraga-Lamas, P. Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management. Sensors 2019, 19, 2394. [Google Scholar] [CrossRef]
- Fakhrulddin, S.S.; Gharghan, S.K.; Al-Naji, A.; Chahl, J. An Advanced First Aid System Based on an Unmanned Aerial Vehicles and a Wireless Body Area Sensor Network for Elderly Persons in Outdoor Environments. Sensors 2019, 19, 2955. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Besada, J.A.; Bergesio, L.; Campaña, I.; Vaquero-Melchor, D.; López-Araquistain, J.; Bernardos, A.M.; Casar, J.R. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors. Sensors 2018, 18, 1170. [Google Scholar] [CrossRef] [PubMed]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the Sky: Leveraging UAVs for Disaster Management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Brust, M.R.; Danoy, G.; Bouvry, P.; Gashi, D.; Pathak, H.; Gonçalves, M.P. Defending against intrusion of malicious uavs with networked uav defense swarms. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops), Singapore, 9 October 2017; pp. 103–111. [Google Scholar]
- Marchese, M.; Moheddine, A.; Patrone, F. IoT and UAV Integration in 5G Hybrid Terrestrial-Satellite Networks. Sensors 2019, 19, 3704. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y.; Zhang, R. Energy-Efficient Data Collection in UAV Enabled Wireless Sensor Network. IEEE Wirel. Commun. Lett. 2018, 7, 328–331. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Alturjman, S. 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimed. Tools Appl. 2018, 1–22. [Google Scholar] [CrossRef]
- ISO. ISO/IEC 30141:2018 Internet of Things (loT)—Reference Architecture; Standard, International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Motlagh, N.H.; Taleb, T.; Arouk, O. Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet Things J. 2016, 3, 899–922. [Google Scholar] [CrossRef]
- Schalk, L.M. Communication links for unmanned aircraft systems in very low level airspace. In Proceedings of the 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 18–20 April 2017; pp. 1–26. [Google Scholar] [CrossRef]
- Kopardekar, P.; Rios, J. Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations by UTM. 2015. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160000433.pdf (accessed on 11 September 2019).
- Huttunen, M. The U-space Concept. Air Space Law 2019, 44, 69–89. [Google Scholar]
- Bekkouche, O.; Taleb, T.; Bagaa, M. UAVs Traffic Control Based on Multi-Access Edge Computing. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Sedov, L.; Polishchuk, V. Centralized and distributed UTM in layered airspace. In Proceedings of the 8th ICRAT, Catalonia, Spain, 16 February 2018. [Google Scholar]
- Sunil, E.; Hoekstra, J.; Ellerbroek, J.; Bussink, F.; Nieuwenhuisen, D.; Vidosavljevic, A.; Kern, S. Metropolis: Relating airspace structure and capacity for extreme traffic densities. In Proceedings of the ATM Seminar 2015, 11th USA/EUROPE Air Traffic Management R&D Seminar, Lisbon, Portugal, 23–26 June 2015. [Google Scholar]
- Sunil, E.; Hoekstra, J.; Ellerbroek, J.; Bussink, F.; Vidosavljevic, A.; Delahaye, D.; Aalmoes, R. The influence of traffic structure on airspace capacity. In Proceedings of the ICRAT2016—7th International Conference on Research in Air Transportation, Philadelphia, PA, USA, 20–24 June 2016. [Google Scholar]
- Labib, S.N.; Danoy, G.; Musial, J.; Brust, R.M.; Bouvry, P. A Multilayer Low-Altitude Airspace Model for UAV Traffic Management. In Proceedings of the 9th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications DIVANet’19, Miami, FL, USA, 25–29 November 2019. [Google Scholar] [CrossRef]
- D’Agostino, G.; Scala, A. Networks of Networks: The Last Frontier of Complexity; Springer: Berlin, Germany, 2014; Volume 340. [Google Scholar]
- Magnani, M.; Rossi, L. The ml-model for multi-layer social networks. In Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Kaohsiung, Taiwan, 25–27 July 2011; pp. 5–12. [Google Scholar]
- Dickison, M.; Havlin, S.; Stanley, H.E. Epidemics on interconnected networks. Phys. Rev. E 2012, 85, 066109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilosof, S.; Porter, M.A.; Pascual, M.; Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evolut. 2017, 1, 0101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosak, M.; Markovič, R.; Dolenšek, J.; Rupnik, M.S.; Marhl, M.; Stožer, A.; Perc, M. Network science of biological systems at different scales: A review. Phys. Life Rev. 2018, 24, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Musmeci, N.; Nicosia, V.; Aste, T.; Di Matteo, T.; Latora, V. The multiplex dependency structure of financial markets. Complexity 2017. [Google Scholar] [CrossRef]
- Battiston, F.; Perc, M.; Latora, V. Determinants of public cooperation in multiplex networks. New J. Phys. 2017, 19, 073017. [Google Scholar] [CrossRef]
- Gallotti, R.; Barthelemy, M. The multilayer temporal network of public transport in Great Britain. Sci. Data 2015, 2, 140056. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, A.; Zanin, M.; Gómez-Gardenes, J.; Romance, M.; del Amo, A.J.G.; Boccaletti, S. Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 2013, 215, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Tsiotas, D.; Polyzos, S. Decomposing multilayer transportation networks using complex network analysis: A case study for the Greek aviation network. J. Complex Netw. 2015, 3, 642–670. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, J.; Cao, X.B.; Du, W.B. Structural properties of the Chinese air transportation multilayer network. Chaos Solitons Fract. 2016, 86, 28–34. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, R.; Guo, L.; Li, W.; Cai, X. Network Aggregation Process in Multilayer Air Transportation Networks. Chin. Phys. Lett. 2016, 33, 108901. [Google Scholar] [CrossRef]
- Labib, S.N.; Brust, M.R.; Danoy, G.; Bouvry, P. On Standardised Localisation and Tracking Systems for UAVs in Smart Cities. In Proceedings of the 17th Annual STS Conference Graz, Critical Issues in Science, Technology and Society Studies, Graz, Austria, 7–8 May 2018. [Google Scholar]
- Civil Aviation Administration of China (CAAC)—UTM (UOMS). Available online: https://gutma.org/map/China (accessed on 11 September 2019).
- Japan UTM. Available online: https://gutma.org/map/Japan (accessed on 11 September 2019).
- AirMap—UAS Traffic Management Platform. Available online: https://www.airmap.com/ (accessed on 11 September 2019).
- The Unmanned Air System Traffic Management UTM Directory. Available online: https://www.unmannedairspace.info/wp-content/uploads/2019/06/UTM-directory.-June-2019.-v1.pdf (accessed on 11 September 2019).
- Map of International UTM Implementations and Test Sites. Available online: https://gutma.org/map/Main_Page (accessed on 11 September 2019).
- Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016, 2016, 5. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.L.; Wang, M.; Olivares-Mendez, M.A.; Molina, M.; Voos, H. A Real-Time 3D Path Planning Solution for Collision-Free Navigation of Multirotor Aerial Robots in Dynamic Environments. J. Intell. Robot. Syst. 2019, 93, 33–53. [Google Scholar] [CrossRef]
- Goerzen, C.; Kong, Z.; Mettler, B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 2010, 57, 65. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Xiao, J.; Yong, X. A literature review of UAV 3D path planning. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 2376–2381. [Google Scholar]
- Likhachev, M.; Gordon, G.J.; Thrun, S. ARA*: Anytime A* with provable bounds on sub-optimality. In Advances in Neural Information Processing Systems; Mit Press: Vancouver, BC, Canada, 2004; pp. 767–774. [Google Scholar]
- Likhachev, M.; Ferguson, D.I.; Gordon, G.J.; Stentz, A.; Thrun, S. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In Proceedings of the ICAPS, Monterey, CA, USA, 5–10 June 2005; Volume 5, pp. 262–271. [Google Scholar]
- Nash, A.; Koenig, S.; Tovey, C. Lazy Theta*: Any-angle path planning and path length analysis in 3D. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010. [Google Scholar]
- Yahiaoui, S.; Omar, M.; Bouabdallah, A.; Natalizio, E.; Challal, Y. An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU-Int. J. Electron. Commun. 2018, 83, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Danoy, G.; Brust, M.R.; Bouvry, P. Connectivity Stability in Autonomous Multi-level UAV Swarms for Wide Area Monitoring. In Proceedings of the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, Cancun, Mexico, 2–6 November 2015; ACM: New York, NY, USA, 2015; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.C.; Machado, P.; Silva, D.C.; Abreu, P.H. An inverted ant colony optimization approach to traffic. Eng. Appl. Artif. Intell. 2014, 36, 122–133. [Google Scholar] [CrossRef]
- Weber, L. International Civil Aviation Organization. An Introduction. Air Space Law 2007, 32, 417. [Google Scholar]
- Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the current state of UAV regulations. Remote Sens. 2017, 9, 459. [Google Scholar] [CrossRef]
- Schwithal, A.; Tonhäuser, C.; Wolkow, S.; Angermann, M.; Hecker, P.; Mumm, N.; Holzapfel, F. Integrity monitoring in GNSS/INS systems by optical augmentation. In Proceedings of the Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 19–20 September 2017; pp. 1–22. [Google Scholar]
- Cho, J.; Yoon, Y. Assessing the airspace availability for sUAV operations in urban environments: A topological approach using keep-in and keep-out geofence. In Proceedings of the 2018 International Conference on Research in Air Transportation (ICRAT), Barcelona, Spain, 26–29 June 2018. [Google Scholar]
- Edelsbrunner, H.; Letscher, D.; Zomorodian, A. Topological persistence and simplification. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November 2000; pp. 454–463. [Google Scholar]
- Singh, S.; Joshi, R.P.; Kohli, H. Optimal Route Searching in Networks with Dynamic Weights Using Flow Algorithms. In Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 12–14 December 2015; pp. 146–155. [Google Scholar] [CrossRef]
- IEEE Technical Committee on Networked Robots. Available online: https://www-users.cs.umn.edu/~isler/tc/ (accessed on 8 September 2019).
- Motlagh, N.H.; Bagaa, M.; Taleb, T. UAV-based IoT platform: A crowd surveillance use case. IEEE Commun. Mag. 2017, 55, 128–134. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Zhong, S.; Wang, J.; Zhang, W.; Zuo, X.; Maunder, R.G.; Hanzo, L. Aeronautical AdHoc Networking for the Internet-Above-the-Clouds. Proc. IEEE 2019, 107, 868–911. [Google Scholar] [CrossRef]
- Guillen-Perez, A.; Cano, M.D. Flying Ad Hoc Networks: A New Domain for Network Communications. Sensors 2018, 18, 3571. [Google Scholar] [CrossRef] [PubMed]
- Ollero, A.; Lacroix, S.; Merino, L.; Gancet, J.; Wiklund, J.; Remuss, V.; Perez, I.V.; Gutierrez, L.G.; Viegas, D.X.; Benitez, M.A.G.; et al. Multiple eyes in the skies: Architecture and perception issues in the COMETS unmanned air vehicles project. IEEE Robot. Autom. Mag. 2005, 12, 46–57. [Google Scholar] [CrossRef]
- Lagkas, T.; Argyriou, V.; Bibi, S.; Sarigiannidis, P. UAV IoT Framework Views and Challenges: Towards Protecting Drones as “Things”. Sensors 2018, 18, 4015. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, S.; Natalizio, E.; Pascariello, C.; Zema, N.R. A packet loss tolerant rendezvous algorithm for wireless networked robot systems. Asian J. Control 2017, 19, 1413–1423. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Lamont, L. Communication architectures and protocols for networking unmanned aerial vehicles. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1415–1420. [Google Scholar]
- Kuipers, F.; Dijkstra, F. Path selection in multi-layer networks. Comput. Commun. 2009, 32, 78–85. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Hwang, M.H.; Cha, H.R.; Jung, S. Practical Endurance Estimation for Minimizing Energy Consumption of Multirotor Unmanned Aerial Vehicles. Energies 2018, 11, 2221. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin, Germany, 1992; pp. 196–202. [Google Scholar]
Parameter | Value |
---|---|
Number of UAVs (experiment 1 & 2) | 10, 50, 100, 200, 500 |
Number of UAVs (experiment 3) | 10, 50, 100, 200, 500, 1000, 1500 |
Number of nodes | 100 per layer |
Number of layers | 3 |
Edge creation probability | 20% |
Interlayer energy weight interval | [15,20] |
Intralayer energy weight intervals | [5,10], [15,20], [25,30] |
Interlayer time weight interval | [1,5] |
Intralayer time weight intervals | [25,30], [15,20], [5,10] |
Interlayer capacity weight interval | 50 |
Intralayer capacity weight interval | [1,5] |
GPD decision probability () | 50%, 80%, 100% |
LPG percentage of | 0%, 50%, 80% |
Traffic | Time | Energy | Path Changes | Layer Changes | Queue Counts | |
---|---|---|---|---|---|---|
MeanSD | MeanSD | MeanSD | MeanSD | MeanSD | ||
10 | 50% | 52.912.562 | 24.322.073 | 10 | 60 | 00 |
80% | 55.2213.532 | 24.91324.122 | 0.7330.442 | 4.42.657 | 0.2670.442 | |
100% | 59.5714.195 | 26.06327.518 | 0.2330.423 | 1.42.541 | 0.7670.423 | |
50 | 50% | 72.5832.991 | 126.0660.396 | 410 | 2460 | 00 |
80% | 71.60931.663 | 113.49052.779 | 31.11.578 | 180.53312.631 | 14.0674.7127 | |
100% | 95.70954.985 | 142.73085.650 | 19.42.260 | 108.613.237 | 46.7676.683 | |
100 | 50% | 101.5444.173 | 185.7877.196 | 910 | 5460 | 410 |
80% | 97.80741.408 | 168.03471.125 | 80.6673.123 | 444.811.975 | 53.0671.999 | |
100% | 119.54968.633 | 203.498112.434 | 55.5332.391 | 311.414.881 | 132.413.439 | |
200 | 50% | 184.7798.680 | 321.89152.576 | 3230 | 11460 | 2730 |
80% | 174.29298.3507 | 293.762153.836 | 241.24.942 | 1012.29.789 | 255.7672.362 | |
100% | 155.05179.231 | 274.623138.601 | 142.3333.261 | 790.66715.086 | 344.715.775 | |
500 | 50% | 403.158218.089 | 692.006359.752 | 22190 | 29460 | 21690 |
80% | 362.4707200.818 | 626.507340.444 | 1474.86720.884 | 27468.884 | 2002.0679.609 | |
100% | 317.376175.792 | 560.534297.477 | 660.66723.310 | 2403.53323.408 | 1932.65.897 |
Traffic | Time | Energy | Path Changes | Layer Changes | Queue Counts | |
---|---|---|---|---|---|---|
Mean | Mean | Mean | Mean | Mean | ||
10 | 50% | 36.98316.054 | 81.48359.709 | 0.5670.668 | 446.120 | 00 |
80% | 34.69318.101 | 64.13341.679 | 0.70.972 | 346.461 | 00 | |
100% | 35.2923.037 | 55.4942.019 | 0.0660.249 | 30.48.346 | 00 | |
50 | 50% | 90.25648.051 | 184.01176.146 | 19.0333.231 | 353.2673.327 | 0.10.300 |
80% | 56.01023.587 | 122.04942.648 | 20.2333.364 | 2703.347 | 0.20.541 | |
100% | 53.61225.564 | 119.07249.721 | 17.43.989 | 2582.858 | 00 | |
100 | 50% | 87.81845.792 | 143.50790.842 | 63.82.982 | 531.86718.179 | 62.161 |
80% | 67.75328.558 | 105.88355.172 | 62.44.580 | 431.820.706 | 4.81.939 | |
100% | 67.03727.559 | 127.38578.674 | 82.9676.868 | 439.415.928 | 22.2332.654 | |
200 | 50% | 113.01361.736 | 188.479113.829 | 174.56.329 | 1259.228.304 | 17.14.962 |
80% | 97.52266.314 | 153.513139.743 | 182.0675.994 | 1034.629.251 | 16.5674.064 | |
100% | 79.36330.984 | 133.67167.384 | 517.536.862 | 731.86729.662 | 90.2337.196 | |
500 | 50% | 160.941115.246 | 239.410170.669 | 673.912.081 | 3372.93346.131 | 548.03344.961 |
80% | 149.9787130.437 | 232.054252.268 | 745.73317.309 | 3040.260.176 | 39.8676.265 | |
100% | 118.10463.245 | 180.317108.839 | 4177.1300.999 | 1705.06780.250 | 38.6336.264 |
Traffic | Time | Energy | Path Changes | Layer Changes | Queue Counts | |
---|---|---|---|---|---|---|
MeanSD | MeanSD | MeanSD | MeanSD | MeanSD | ||
10 | 80% | 35.89716.054 | 81.48359.709 | 0.5670.669 | 446.120 | 00 |
50% | 36.98321.059 | 60.21138.824 | 2.1670.523 | 26.3332.199 | 00 | |
0% | 41.04822.902 | 42.88331.621 | 0.0330.179 | 19.25.5131 | 0.0330.179 | |
50 | 80% | 90.25648.051 | 184.01176.146 | 19.0333.231 | 353.2673.327 | 0.10.303 |
50% | 58.08334.847 | 104.55538.793 | 56.26.597 | 256.48.788 | 0.0330.179 | |
0% | 38.53523.058 | 60.26346.212 | 3.7670.558 | 118.26713.177 | 3.7670.558 | |
100 | 80% | 87.817545.792 | 143.50790.842 | 63.82.982 | 531.86718.179 | 62.165 |
50% | 82.31255.216 | 138.02768.833 | 161.7676.855 | 604.06717.257 | 0.6670.788 | |
0% | 39.92922.709 | 59.78446.062 | 7.20.653 | 23017.400 | 7.20.653 | |
200 | 80% | 113.01461.736 | 188.479113.829 | 174.56.329 | 1259.228.303 | 17.14.962 |
50% | 91.60250.154 | 134.86181.634 | 338.96714.102 | 1079.431.008 | 3.8671.857 | |
0% | 40.28222.734 | 60.97446.324 | 14.8671.118 | 465.73326.967 | 14.8671.117 | |
500 | 80% | 160.942115.246 | 239.411170.669 | 673.912.0816 | 3372.93346.131 | 38.6336.263 |
50% | 131.89385.076 | 191.934122.321 | 1218.33337.382 | 3355.66751.543 | 35.66.988 | |
0% | 40.79822.697 | 60.92546.422 | 37.0671.672 | 115433.765 | 37.0671.672 |
Traffic | Heuristic | Time | Energy | Path Changes | Layer Changes | Queue Counts |
---|---|---|---|---|---|---|
MeanSD | MeanSD | MeanSD | MeanSD | MeanSD | ||
10 | GOS | 36.624.88 | 33.222.836 | 00 | 160 | 00 |
GPD | 37.00527.297 | 37.46825.579 | 00 | 17.9337.006 | 00 | |
LPG | 41.4828.825 | 34.63624.895 | 00 | 15.4675.142 | 00 | |
50 | GOS | 42.4824.708 | 36.1225.274 | 00 | 800 | 00 |
GPD | 40.07527.126 | 38.06926.758 | 0.20.603 | 84.612.759 | 00 | |
LPG | 38.56726.827 | 39.74127.149 | 1.2671.367 | 9212.365 | 00 | |
100 | GOS | 38.9625.905 | 42.7527.849 | 00 | 1960 | 00 |
GPD | 40.55126.048 | 40.88428.378 | 2.1331.707 | 175.66713.811 | 0.1670.453 | |
LPG | 36.0524.306 | 47.79629.8793 | 13.64.957 | 228.7338.982 | 00 | |
200 | GOS | 46.75531.381 | 52.4235.264 | 00 | 3600 | 170 |
GPD | 41.47525.571 | 51.012732.667 | 27.84.527 | 420.615.512 | 4.7672.458 | |
LPG | 34.82321.419 | 59.73731.569 | 63.1676.798 | 585.06716.426 | 00 | |
500 | GOS | 80.35553.447 | 109.59173.879 | 00 | 8640 | 3000 |
GPD | 54.50232.649 | 82.032859.460 | 258.33320.190 | 127538.084 | 101.43310.941 | |
LPG | 45.67625.424 | 84.79741.121 | 33124.960 | 1895.53349.837 | 1.11.247 | |
1000 | GOS | 123.00784.891 | 189.113131.816 | 00 | 16680 | 13720 |
GPD | 76.06950.318 | 111.649101.295 | 982.43340.802 | 2425.93354.944 | 441.46725.967 | |
LPG | 49.86727.228 | 82.84542.786 | 670.533.059 | 3592.26757.933 | 10.4334.318 | |
1500 | GOS | 162.340114.463 | 264.691193.237 | 00 | 25840 | 30970 |
GPD | 93.35569.075 | 137.715142.167 | 2267.981.103 | 3400.93375.662 | 1059.03366.985 | |
LPG | 59.88734.968 | 100.839953.280 | 1220.53352.787 | 6051.53396.466 | 11.84.490 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samir Labib, N.; Danoy, G.; Musial, J.; Brust, M.R.; Bouvry, P. Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management. Sensors 2019, 19, 4779. https://doi.org/10.3390/s19214779
Samir Labib N, Danoy G, Musial J, Brust MR, Bouvry P. Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management. Sensors. 2019; 19(21):4779. https://doi.org/10.3390/s19214779
Chicago/Turabian StyleSamir Labib, Nader, Grégoire Danoy, Jedrzej Musial, Matthias R. Brust, and Pascal Bouvry. 2019. "Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management" Sensors 19, no. 21: 4779. https://doi.org/10.3390/s19214779
APA StyleSamir Labib, N., Danoy, G., Musial, J., Brust, M. R., & Bouvry, P. (2019). Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management. Sensors, 19(21), 4779. https://doi.org/10.3390/s19214779