Improved Drought Monitoring Index Using GNSS-Derived Precipitable Water Vapor over the Loess Plateau Area
<p>Geographic distribution of selected global navigation satellite system (GNSS) and meteorological stations over the Loess Plateau (LP) region.</p> "> Figure 2
<p>Interpolated time series of precipitable water vapor (PWV) at XNIN Station over the period of 1999–2015.</p> "> Figure 3
<p>Average evapotranspiration (ET) values at 88 meteorological stations calculated based on Penman–Monteith (PM) and Thornthwaite (TH) models over the period of 1979–2016.</p> "> Figure 4
<p>Relationships between ET residual and (<b>a</b>) precipitable water vapor (PWV) / (<b>b</b>) temperature (T) over the LP region, respectively.</p> "> Figure 5
<p>Comparisons of root mean square (RMS) and mean absolute error (MAE) of ET residual between TH and a revised Thornthwaite (RTH) models at 88 stations over the period of 2015–2016 when the ET derived from PM model is regarded as reference.</p> "> Figure 6
<p>Average RMS improvement rate of RTH model compared with the TH model in the LP region over the period of 2015–2016.</p> "> Figure 7
<p>Scatter plot of monthly ET values calculated by TH, RTH, and PM models established in the LP region over the period of 2015–2016.</p> "> Figure 8
<p>Long-term time series of average ET calculated using different methods in the LP region over the period of 1979–2016.</p> "> Figure 9
<p>Long-term time series of average difference between RTH–PM- and TH–PM-based SPEI under multi-month scales at 88 meteorological stations over the period of 1979–2016.</p> "> Figure 10
<p>Pearson’s correlations of TH–PM- and RTH–PM-based SPEI under different multi-month scales.</p> "> Figure 11
<p>RMS comparison of SPEI difference between TH–PM and RTH–PM at each meteorological station over the period of 1979–2016, where the left/right squares at each station refer to the RMS derived from TH- and RTH-based SPEI, respectively.</p> "> Figure 12
<p>Average RMS improvement rate of RTH-based SPEI compared with TH-based SPEI in the LP region under different month scales.</p> "> Figure 13
<p>Scatter plots of temperature and precipitation in the LP region over the period of 1979–2016.</p> "> Figure 14
<p>Comparison of TH- and RTH-based SPEI at XNIN Station over the period of 1999–2014 under different month scales.</p> "> Figure 15
<p>Comparison of SPEI calculated using different models at GNSS and meteorological stations in the LP region in April 2013 under multi-month scales, where the first, second, and third columns are the SPEI calculated based on TH, RTH, and PM models under different month scales.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Retrieval of GNSS and ERA-Interim PWV
2.3. Meteorological Data
2.4. Theory of ET and SPEI Calculation
2.5. RTH Model
- Calculating the ET residual between TH and PM model:
- Analyzing the time series of ET residual and fitting the ET residual model using the GNSS-derived PWV and temperature:
- Obtaining the initial ET value using TH model and establishing the ETH model using the ET residual:
3. Experimental Results and Discussion
3.1. Missing Data Interpolation
3.2. Comparison of ET Derived from Different Models
3.3. Validation of the RTH Model
3.4. Evaluation of RTH-Based SPEI at Meteorological Stations
3.5. Case of Spatial Analysis of RTH-Based SPEI
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Zhang, Y.; Peng, C.; Li, W.; Fang, X.; Zhang, T.; Zhu, Q.; Chen, H.; Zhao, P. Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: Recent progress and future challenges. Environ. Rev. 2013, 21, 103–115. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Manag. 2017, 179, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research paper no. 45; US Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, January 1993; pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Guttman, N.B. Comparing the palmer drought index and the standardized precipitation index1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Redmond, K.T. The depiction of drought: A commentary. Bull. Am. Meteorol. Soc. 2002, 83, 1143–1148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-based evaluation of drought events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Shen, Z.; Xie, X. Evolution Characteristics of Seasonal Drought in Hunan Based on the Standardized Precipitation Index (SPI). Geoscience 2019, 2, 56–64. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Lorenzo-Lacruz, J.; El Kenawy, A.; Azorin-Molina, C.; Morán-Tejeda, E.; Pasho, E.; Zabalza, J.; Beguería, S.; Angulo-Martínez, M. The NAO impact on droughts in the Mediterranean region. In Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region; Springer: Dordrecht, Holland, 2011; pp. 23–40. [Google Scholar]
- Vicente, S.S.M.; Peña-Gallardo, M.; Hannaford, J.; Lorenzo-Lacruz, J.; Sbovoda, M.; Quiring, S.; Domínguez-Castro, F.; Maneta, M.; Tomas-Burguera, M.; Ahmed, E.K. Climatic drought time-scales show varied spatial and seasonal effects on hydrological droughts in natural basins of US. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–13 April 2018; p. 6200. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435. [Google Scholar] [CrossRef] [PubMed]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Duan, J.; Bevis, M.; Fang, P.; Bock, Y.; Chiswell, S.; Businger, S.; Rocken, C.; Solheim, F.; van Hove, T.; Ware, R.; et al. GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol. 1996, 35, 830–838. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Niell, A.E. Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 475–480. [Google Scholar]
- Memmo, A.; Fionda, E.; Paolucci, T.; Cimini, D.; Ferretti, R.; Bonafoni, S.; Ciotti, P. Comparison of MM5 integrated water vapor with microwave radiometer, GPS, and radiosonde measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1050–1058. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Li, Z.; Heinkelmann, R.; Nilsson, T.; Dick, G.; Ge, M.; Schuh, H. GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. J. Geophys. Res. Atmos. 2016, 121, 912–930. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yao, Y.; Yao, W.; Zhang, S. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China. J. Atmos. Sol. Terr. Phys. 2019, 182, 85–92. [Google Scholar] [CrossRef]
- Huelsing, H.K.; Wang, J.; Mears, C.; Braun, J.J. Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements. Atmos. Meas. Tech. 2017, 10, 4055–4066. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yao, Y.; Yao, W.; Li, Z. Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Sci. Rep. 2018, 8, 7939. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Abdullah, M.; Singh, M.J.; Suparta, W.; Islam, M.T.; Tangang, F. Characterization of GPS PWV during flooding event over Keningau, Sabah. In Proceedings of the 2013 IEEE International Conference on Space Science and Communication (IconSpace), Melaka, Malaysia, 1–3 July 2013; pp. 429–433. [Google Scholar]
- Choy, S.; Wang, C.; Zhang, K.; Kuleshov, Y. GPS sensing of precipitable water vapour during the March 2010 Melbourne storm. Adv. Space Res. 2013, 52, 1688–1699. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, P.; Chen, H.; Cai, J.; Li, Z.; Chao, N.; Sneeuw, N. Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Sci. Rep. 2017, 7, 5874. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Cheng, Y.; Li, L.; Yuan, H. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Yang, Y.; Bian, Y. Building a harmonious relationship between water resource and the environment on the Loess Plateau: How to restore its vegetation. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; pp. 2834–2837. [Google Scholar]
- Gao, X.; Zhao, Q.; Zhao, X.; Wu, P.; Pan, W.; Gao, X.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.L.; Liu, W.Z.; Jiang, D.J. Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st Century. Glob. Planet. Chang. 2012, 82, 65–73. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Kouba, J. A Guide to Using International GNSS Service (IGS) Products; IGS: Ottawa, Canada, 2009. [Google Scholar]
- Perler, D.; Geiger, A.; Hurter, F. 4D GPS water vapor tomography: New parameterized approaches. J. Geod. 2011, 85, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Ding, M. A neural network model for predicting weighted mean temperature. J. Geod. 2018, 92, 1187–1198. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res 2011, 116, D20104. [Google Scholar] [CrossRef]
- Li, J.; Sun, X. Evaluation of changes of Thornthwaite Moisture Index in Victoria. Aust. Geomech. J. 2015, 50, 39–49. [Google Scholar]
- Karunarathne, A.M.A.N.; Gad, E.F.; Disfani, M.M.; Sivanerupan, S.; Wilson, J.L. Review of calculation procedures of Thornthwaite Moisture Index and its impact on footing design. Aust. Geomech. J. 2016, 51, 85–95. [Google Scholar]
- Zhang, W.; Lou, Y.; Haase, J.S.; Zhang, R.; Zheng, G.; Huang, J.; Shi, C.; Liu, J. The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-Interim moisture trends and errors from 1999 to 2015. J. Clim. 2017, 30, 7643–7667. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Wu, S.; Zhang, K. An effective toolkit for the interpolation and gross error detection of GPS time series. Surv. Rev. 2016, 48, 202–211. [Google Scholar] [CrossRef]
- Allen, R.G. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43, 35–92. [Google Scholar]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the definition of reference evapotranspiration. ICID Bull. 1994, 43, 1–34. [Google Scholar]
Index | Model | Scale | ||||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 6 | 12 | 18 | 24 | Mean | ||
RMS | TH | 0.46 | 0.53 | 0.51 | 0.35 | 0.46 | 0.41 | 0.45 |
RTH | 0.24 | 0.27 | 0.29 | 0.35 | 0.36 | 0.41 | 0.32 | |
MAE | TH | 0.37 | 0.44 | 0.44 | 0.28 | 0.38 | 0.33 | 0.37 |
RTH | 0.20 | 0.22 | 0.23 | 0.28 | 0.30 | 0.33 | 0.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Ma, X.; Yao, W.; Liu, Y.; Du, Z.; Yang, P.; Yao, Y. Improved Drought Monitoring Index Using GNSS-Derived Precipitable Water Vapor over the Loess Plateau Area. Sensors 2019, 19, 5566. https://doi.org/10.3390/s19245566
Zhao Q, Ma X, Yao W, Liu Y, Du Z, Yang P, Yao Y. Improved Drought Monitoring Index Using GNSS-Derived Precipitable Water Vapor over the Loess Plateau Area. Sensors. 2019; 19(24):5566. https://doi.org/10.3390/s19245566
Chicago/Turabian StyleZhao, Qingzhi, Xiongwei Ma, Wanqiang Yao, Yang Liu, Zheng Du, Pengfei Yang, and Yibin Yao. 2019. "Improved Drought Monitoring Index Using GNSS-Derived Precipitable Water Vapor over the Loess Plateau Area" Sensors 19, no. 24: 5566. https://doi.org/10.3390/s19245566
APA StyleZhao, Q., Ma, X., Yao, W., Liu, Y., Du, Z., Yang, P., & Yao, Y. (2019). Improved Drought Monitoring Index Using GNSS-Derived Precipitable Water Vapor over the Loess Plateau Area. Sensors, 19(24), 5566. https://doi.org/10.3390/s19245566