An Investigation on a Quantitative Tomographic SHM Technique for a Containment Liner Plate in a Nuclear Power Plant with Guided Wave Mode Selection
<p>Dispersion curve for CLP mock-up specimen. (<b>a</b>) dispersion curve for phase velocity (<b>b</b>) dispersion curve for group velocity.</p> "> Figure 2
<p>Basic concept of image reconstruction using the RAPID algorithm.</p> "> Figure 3
<p>Schematic of CLP mock-up specimen (<b>a</b>) real positions of defect locations; (<b>b</b>) size information of defects on the CLP mock-up plate.</p> "> Figure 4
<p>Partition information of the CLP mock-up specimen.</p> "> Figure 5
<p>Schematic of part size and transducer location on the specimen (indicated as red circles).</p> "> Figure 6
<p>Experimental setup for generating GWs.</p> "> Figure 7
<p>Magnitude of GW signal from transmitter–receiver pair under 400 mm propagation distance (<b>a</b>) A0 1.0 MHz·mm; (<b>b</b>) S0 2.0 MHz·mm; (<b>c</b>) A1 3.0 MHz·mm; (<b>d</b>) S1 3.5 MHz·mm; (<b>e</b>) A1 3.6 MHz·mm; (<b>f</b>) S0 3.0 MHz·mm.</p> "> Figure 7 Cont.
<p>Magnitude of GW signal from transmitter–receiver pair under 400 mm propagation distance (<b>a</b>) A0 1.0 MHz·mm; (<b>b</b>) S0 2.0 MHz·mm; (<b>c</b>) A1 3.0 MHz·mm; (<b>d</b>) S1 3.5 MHz·mm; (<b>e</b>) A1 3.6 MHz·mm; (<b>f</b>) S0 3.0 MHz·mm.</p> "> Figure 8
<p>Wave structure analysis of Lamb wave modes; (<b>a</b>) S0 3.0 MHz·mm; (<b>b</b>) A1 3.6 MHz·mm.</p> "> Figure 9
<p>Hann window signal for excitation of wave signal (<b>a</b>) 500 kHz for S0 mode; (<b>b</b>) 600 kHz for A1 mode.</p> "> Figure 10
<p>CLP mock-up modeling specification for FEA simulation.</p> "> Figure 11
<p>Geometric information of mesh for generating Lamb wave (<b>a</b>) 500 kHz for S0 mode; (<b>b</b>) 600 kHz for A1 mode.</p> "> Figure 12
<p>Magnitude of GW signal from ABAQUS FEA simulation under 400 mm propagation distance (<b>a</b>) A1 3.6 MHz·mm; (<b>b</b>) S0 3.0 MHz·mm.</p> "> Figure 13
<p>Propagation motions of Lamb waves from ABAQUS FEA simulation under 400 mm propagation distance (<b>a</b>) A1 3.6 MHz·mm; (<b>b</b>) S0 3.0 MHz·mm.</p> "> Figure 14
<p>Lamb wave energy variation with respect to wall-thinning depth (<b>a</b>) modeling of wall-thinning defects for FEA; (<b>b</b>) energy variation results in comparison with a no-defect condition.</p> "> Figure 15
<p>Wall-thinning defects information for experimental verification: (<b>a</b>) defect No. 5 with wall-thinning depth = 2 mm; (<b>b</b>) defect No. 9 with wall-thinning depth = 1 mm.</p> "> Figure 16
<p>Experimental amplitude and wave mode variation of Lamb wave modes with respect to wall-thinning status: (<b>a</b>) A1 3.6 MHz·mm; (<b>b</b>) S0 3.0 MHz·mm.</p> "> Figure 17
<p>Wave propagation network and defect locations of Part 1 for verifying suitable mode selection by image reconstruction techniques.</p> "> Figure 18
<p>RAPID tomographic results for GW modes: (<b>a</b>) A1 3.6 MHz·mm case; (<b>b</b>) S0 3.0 MHz·mm case.</p> "> Figure 19
<p>Overall results of tomographic images for CLP mock-up specimen: (<b>a</b>) part 1; (<b>b</b>) part 2; (<b>c</b>) part 3; (<b>d</b>) part 4; (<b>e</b>) part 5; (<b>f</b>) part 6; (<b>g</b>) part 7; (<b>h</b>) part 8.</p> "> Figure 19 Cont.
<p>Overall results of tomographic images for CLP mock-up specimen: (<b>a</b>) part 1; (<b>b</b>) part 2; (<b>c</b>) part 3; (<b>d</b>) part 4; (<b>e</b>) part 5; (<b>f</b>) part 6; (<b>g</b>) part 7; (<b>h</b>) part 8.</p> "> Figure 19 Cont.
<p>Overall results of tomographic images for CLP mock-up specimen: (<b>a</b>) part 1; (<b>b</b>) part 2; (<b>c</b>) part 3; (<b>d</b>) part 4; (<b>e</b>) part 5; (<b>f</b>) part 6; (<b>g</b>) part 7; (<b>h</b>) part 8.</p> "> Figure 20
<p>Tomography result of CLP mock-up specimen: comparison of defects information and tomographic image of CLP mock-up specimen.</p> ">
Abstract
:1. Introduction
2. Theoretical Fundamentals
2.1. Guided Wave Analysis for Suitable Mode Selection
2.2. RAPID Algorithm of Guided Wave Tomography
3. Experimental Setup and Specimen Information
3.1. Specimen Information
3.2. Experimental Setup
4. Results and Discussion
4.1. Finite Element Analysis for Suitable Mode Verification
4.2. Wall-Thinning Verification for Lamb Wave Modes
4.3. Tomography Comparison Study for Suitable Guided Wave Modes
4.4. CLP Mock-up Reconstruction Using RAPID Algorithm Tomography
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cawley, P.; Lowe, M.; Alleyne, D.; Pavlakovic, B.; Wilcox, P.D. Practical Long Range Guided Wave Inspection—Applications to Pipes and Rail. Mater. Eval 2003, 61, 66–74. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Viktorov, I.A. Rayleigh and Lamb Waves: Physical Theory and Applications; Plenum Press: New York, NY, USA, 1970. [Google Scholar]
- Alleyne, D.N.; Cawley, P. Optimization of Lamb wave Inspection Technique. NDT E Int. 1992, 25, 11–22. [Google Scholar] [CrossRef]
- Cho, Y. Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 591–603. [Google Scholar] [PubMed]
- Park, J.; Lee, J.; Cho, Y. “Finite Element Analysis Of Scattering Signal from Slope Angle of Notch Type Defects on the Plate Surface. J. KSNT 2017, 37, 139–147. [Google Scholar]
- Bart-Smith, H.; Bastawros, A.-F.; Mumm, D.; Evans, A.; Sypeck, D.; Wadley, H. Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined using X-ray Tomography and Surface Strain Mapping. Acta Mater. 1998, 46, 3583–3592. [Google Scholar] [CrossRef]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging. Med. Phys. 2002, 29, 107. [Google Scholar] [CrossRef]
- Hay, T.; Royer, R.; Gao, H.; Zhao, X.; Rose, J. A Comparison of Embedded Sensor Lamb Wave Ultrasonic Tomography Approaches for Material Loss Detection. Smart Mater. Struct. 2006, 15, 946–951. [Google Scholar] [CrossRef]
- Van Velsor, J.; Gao, H.; Rose, J. Guided-Wave Tomographic Imaging of Defects in Pipe using a Probabilistic Reconstruction Algorithm. Insight-Non-Destr. Test. Condition Monit. 2007, 49, 532–537. [Google Scholar] [CrossRef]
- Hinders, M.K.; McKeon, J.C. Lamb Wave Tomography for Corrosion Mapping. In Proceedings of the 2nd Joint NASA/FAA/DoD Conference on Aging Aircraft, Washington, DC, USA, 1 January 1999. [Google Scholar]
- Pei, J.; Yousuf, M.; Degertekin, F.; Honein, B.; Khuri-Yakub, B. Lamb Wave Tomography and Its Application in Pipe Erosion/Corrosion Monitoring. Res. Nondestr. Eval. 1996, 8, 189–197. [Google Scholar] [CrossRef]
- Malyarenko, E.V.; Hinders, M.K. Fan Beam and Double Crosshole Lamb Wave Tomography for Mapping Flaws in Aging Aircraft Structures. J. Acoust. Soc. Am. 2000, 108, 1631–1639. [Google Scholar] [CrossRef]
- Pei, J.; Yousuf, M.; Degertekin, F.; Honein, B.; Khuri-Yakub, B. Plate Tomography with Dry Contact Lamb Wave Transducers. Acoust. Imaging 1996, 22, 725–730. [Google Scholar]
- Hutchins, D.; Jansen, D.; Edwards, C. Lamb-Wave Tomography using Non-Contact Transduction. Ultrasonics 1993, 31, 97–103. [Google Scholar] [CrossRef]
- Park, J.; Lim, J.; Cho, Y. Guided-Wave Tomographic Imaging of Plate Defects by Laser-based Ultrasonic Techniques. J. Korean Soc. Nondest. Test. 2014, 34, 435–440. [Google Scholar] [CrossRef]
- Albiruni, F.; Cho, Y.; Lee, J.-H.; Ahn, B.-Y. Non-Contact Guided Waves Tomographic Imaging of Plate-Like Structures using a Probabilistic Algorithm. Mater. Trans. 2012, 53, 330–336. [Google Scholar]
- Leonard, K.R.; Hinders, M.K. Lamb Wave Tomography of Pipe-Like Structures. Ultrasonics 2005, 43, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, F.; Alqradawi, M.Y. Guided ultrasonic wave tomography of a pipe bend exposed to environmental conditions: A long term monitoring experiment. NDT E Int. 2019, 105, 1–10. [Google Scholar] [CrossRef]
- Nagy, P.; Simonetti, F.; Instanes, G. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection. Ultrasonics 2014, 54, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Sheen, B.; Cho, Y. A Study on Quantitative Lamb Wave Tomogram Via Modified Rapid Algorithm with Shape Factor Optimization. Int. J. Precis. Eng. Manuf. 2012, 13, 671–677. [Google Scholar] [CrossRef]
- Prasad, S.M.; Balasubramaniam, K.; Krishnamurthy, C. Structural Health Monitoring of Composite Structures using Lamb Wave Tomography. Smart Mater. Struct. 2004, 13, N73–N79. [Google Scholar] [CrossRef]
- Lee, J.; Sheen, B.; Cho, Y. Quantitative Tomographic Visualization for Irregular Shape Defects by Guided Wave Long Range Inspection. Int. J. Precis. Eng. Manuf. 2015, 16, 1949–1954. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, Y. A Research of Tomography for Wall-thinning Depth Verification by Ultrasonic Guided Wave Structure Analysis Approach. In Proceedings of the APWSHM-2018, Hong Kong, China, 12–15 November 2018. [Google Scholar]
- Rao, J.; Ratassepp, M.; Fan, Z. Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion. J. Sound Vib. 2017, 400, 317–328. [Google Scholar] [CrossRef]
- Huthwaite, P. Guided wave tomography with an improved scattering model. Proc. R. Soc. A. 2016, 472, 2195–2219. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.R.F.; Chan, E.; Wang, C.-H. A comparison and extensions of algorithms for quantitative imaging of laminar damge I plates. I. point spread functions and near filed imaging. Wave Motion 2015, 58, 222–243. [Google Scholar] [CrossRef]
- Huang, S.; Wei, Z.; Zhao, W.; Wang, S. A New Omni-directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects. Sensors 2014, 14, 3458–3476. [Google Scholar] [CrossRef] [PubMed]
- Lize, E.; Rebillat, M.; Mechbal, N.; Bolzmacher, C. Optimal dual-PZT sizing and network design for baseline-free SHM of complex anisotropic composite structures. Smart Mater. Struct. 2018, 27, 11518. [Google Scholar] [CrossRef]
- Huan, Q.; Chen, M.; Li, F. A practical omni-directional SH wave transducer for structural health monitoring based on two thickness-poled piezoelectric half-rings. Ultrasonics 2019, 94, 342–429. [Google Scholar] [CrossRef] [PubMed]
Defects # | Thickness (mm) | Size (mm) |
---|---|---|
1 | 3.1 | 100 × 100 |
2 | 5.3 | 100 × 100 |
3 | 4.7 | 150 × 100 |
4 | 5.9 | 150 × 100 |
5 | 4.0 | 150 × 150 |
6 | 5.9 | 150 × 150 |
7 | 2.0 | 50 × 50 |
8 | 4.0 | 160 × 100 |
9 | 5.0 | 150 × 150 |
10 | 5.9 | 150 × 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Cho, Y. An Investigation on a Quantitative Tomographic SHM Technique for a Containment Liner Plate in a Nuclear Power Plant with Guided Wave Mode Selection. Sensors 2019, 19, 2819. https://doi.org/10.3390/s19122819
Lee Y, Cho Y. An Investigation on a Quantitative Tomographic SHM Technique for a Containment Liner Plate in a Nuclear Power Plant with Guided Wave Mode Selection. Sensors. 2019; 19(12):2819. https://doi.org/10.3390/s19122819
Chicago/Turabian StyleLee, Yonghee, and Younho Cho. 2019. "An Investigation on a Quantitative Tomographic SHM Technique for a Containment Liner Plate in a Nuclear Power Plant with Guided Wave Mode Selection" Sensors 19, no. 12: 2819. https://doi.org/10.3390/s19122819
APA StyleLee, Y., & Cho, Y. (2019). An Investigation on a Quantitative Tomographic SHM Technique for a Containment Liner Plate in a Nuclear Power Plant with Guided Wave Mode Selection. Sensors, 19(12), 2819. https://doi.org/10.3390/s19122819