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Abstract: The bathymetry of nearshore coastal environments and lakes is constantly reworking
because of the change in the patterns of energy dispersal and related sediment transport pathways.
Therefore, updated and accurate bathymetric models are a crucial component in providing necessary
information for scientific, managerial, and geographical studies. Recent advances in satellite
technology revolutionized the acquisition of bathymetric profiles, offering new vistas in mapping.
This contribution analyzed the suitability of Sentinel-2 and Landsat-8 images for bathymetric mapping
of coastal and lake environments. The bathymetric algorithm was developed using an empirical
approach and a random forest (RF) model based on the available high-resolution LiDAR bathymetric
data for Mobile Bay, Tampa Bay, and Lake Huron regions obtained from the National Oceanic
and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC). Our results
demonstrate that the satellite-derived bathymetry is efficient for retrieving depths up to 10 m for
coastal regions and up to 30 m for the lake environment. While using the empirical approach,
the root-mean-square error (RMSE) varied between 1.99 m and 4.74 m for the three regions. The RF
model, on the other hand, provided an improved bathymetric model with RMSE between 1.13 m and
1.95 m. The comparative assessment suggests that Sentinel-2 has a slight edge over Landsat-8 images
while employing the empirical approach. On the other hand, the RF model shows that Landsat-8
retrieves a better bathymetric model than Sentinel-2. Our work demonstrated that the freely available
Sentinel-2 and Landsat-8 imageries proved to be reliable data for acquiring updated bathymetric
information for large areas in a short period.

Keywords: aquatic environment; remote sensing; topographic mapping; spectral reflectance;
random forest

1. Introduction

Aquatic environments are some of the most dynamic regions of the earth. Among the aquatic
systems, the bathymetry or depth of underwater terrain is one of the most important parameters
constantly being reworked and changed both in space and time. The rapid reworks in bathymetry are
because of the changes in the patterns of energy dispersal and related sediment transport pathways [1].
Clarke [2] indicated that huge turbidity currents result in bedform migration within a few hours. Simons
and Richardson [3] presented a positive correlation between bathymetric changes and measured stream
power in fluvial systems. Sea level rise, shoreline morphology dynamics, beach nourishment, coastal

Sensors 2019, 19, 2788; doi:10.3390/s19122788 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6852-145X
https://orcid.org/0000-0003-3653-5771
http://www.mdpi.com/1424-8220/19/12/2788?type=check_update&version=1
http://dx.doi.org/10.3390/s19122788
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2788 2 of 20

erosion, and accretion are other relevant forcing factors behind bathymetric changes [4,5]. In shallower
waters, updated and detailed coastal topography and bathymetry are critical for navigational purpose,
pipeline constriction, exploration, defense, and research applications, as well as other management
and spatial planning developmental projects [6,7]. However, due to the constant rework of bathymetry,
the mapping and measuring of these alterations require a shift from static management measures to
near-real-time management procedures [8].

Traditional or static methods for monitoring and measuring bathymetry rely on field surveys
utilizing echo sounding and mapping using multi-beam and side-scan sonars. However, such
approaches are characterized as being costly, labor-intensive, and time-consuming techniques.
In single-beam echo sounders, a sound pulse from the vessel carrying the echo sounder instrument
is sendt underneath and listens until the echo from the bottom is heard, thus providing depth at a
single point. The water depth is then estimated by dividing the speed of sound by half of the time
it takes for the echo to be heard. The multi-beam and side-scan sonars transmit multiple beams of
sound, which represent the intensity and amplitude of reflected acoustic signals from the sea floor,
resulting in an image of its physical reflectance and scattering characteristics. Although multi-beam
echo sounding (MBES) surveys produce accurate bathymetric information of the surveyed area, this
method is constrained by the spatial and temporal scale, expensive to operate, and unable to survey in
shallow seas and marine protected areas [9,10]. It is estimated that, at the best resolution of MBES,
more than 200 ship-years and billions of dollars would be needed to complete a swath survey of the
seafloor [11]. Nevertheless, the current availability of accurate bathymetric charts from ship-based
surveys is not available for the whole globe, because only a small fraction of the world’s aquatic
environments is surveyed so far.

The increasing body of contemporary literature shows the potential of remotely sensed data in
bathymetric studies [12–16]. In contrast to the traditional techniques described previously, remotely
sensed data rely upon the understanding of the physical properties of the surface water, the bottom
topography, and the atmosphere [17]. The principal motivation for the usage of satellites in
bathymetric surveys is that their uniform and comprehensive global coverage can contribute to
a better understanding of the topographic changes instantaneously and spatially. Radar altimeters
abroad the spacecraft European Remote Sensing Satellite (ERS-1) and Geosat surveyed over global
seas to obtain bathymetric information with high accuracy and moderate spatial resolution [18]. Dixon
and Naraghi [19] summarized the principles of satellite altimeter measurements for predicting seafloor
topography. The gravity anomalies estimated from geoid undulations are highly correlated with
seafloor topography, and these anomalies help in mapping bathymetry with a radar altimeter. ERS-1
completed its near-global mapping of sea surface topography in 1995, which was then used to reproduce
the seafloor topography for data-constrained and deeper oceans [20]. Because the radar altimeter uses
gravity anomalies to correlate bathymetry, this method is mostly applicable for deep sea regions for
mapping large seamounts and guyots [21]. Furthermore, the estimation of bathymetry from gravity
anomalies includes several mathematical models and is, therefore, a complicated approach. On the
other hand, airborne Light Detection and Ranging (LiDAR) bathymetry (ALB) is a useful technique
for measuring the moderately to shallower deep coastal waters and lakes (30–50 m depth) from a
low-altitude aircraft using a scanning, pulsed laser beam [22]. LiDAR offers about a 70% reduction
in operating costs when compared with standard ship surveys [22]; however, it also has spatial and
temporal constraints. Satellite LiDAR (e.g., Ice, Cloud, and land Elevation Satellite-ICESat) was also
used to estimate water depth in clear waters with high accuracy in conjunction with spectro-radiometers
and other remote-sensing data [23,24].

Multispectral remote-sensing datasets characterized by high spatial and temporal resolutions are
the most frequently used method to estimate bathymetry on shallow water bodies such as coastal
areas, estuaries, rivers, and lakes [7,25]. This is because they are relatively cheap, easy to process,
and spatially extensive [26]. Multispectral data approximate the radiative transfer in water using
an empirical approach to model reflectance and measured bathymetry via least squares regression
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analysis [27]. Such empirical methods rely on in situ bathymetric data and their relationship with
water-leaving reflectance, with wavelengths typically in the visible spectrum, and the corresponding
depth [23]. A variety of satellite sensors placed in orbit support this approach. In fact, optical
satellite-derived bathymetric techniques began in the 1970s with the introduction of the Landsat
series [12]. Since then, several studies used higher-spatial-resolution images to measure the water depth,
for instance, Landsat-4 [28], Ikonos [13], Landsat-5 and Landsat-7 [29], Quickbird [30], Worldview
2 [14], Landsat-8 [7], Sentinel-2 [16], and RapidEye [5]. In heterogeneous complex water bodies, linear
relationships, log-linear relationships, and band ratios may not be correctly fitted [31]. Hyper-spectral
sensors that carry several narrow-wavelength bands hold the promise of providing accurate depth
retrieval [32,33]; however, the number of satellites with hyper-spectral characteristics is limited.

Recently, machine learning (ML) techniques gained popularity for deriving depth information
from satellite sensors, which typically involves significant amounts of data and dealing in more complex
environments. Studies involving artificial neural network [34], support vector machine [35,36], and
random forest [37] models attempted to improve the performance of bathymetric retrieval algorithms
in heterogeneous environments where the empirical approach was ineffective. These data-driven
models are considered to be more flexible and accurate for relating satellite images to water depth
data [38].

This paper utilizes Sentinel-2 and Landsat-8 images in conjunction with existing bathymetric maps
for developing a satellite-derived bathymetric (SDB) algorithm. Our hypothesis involved investigating
the suitability of multi-band satellite imagery as an effective tool for updating the water column depth
continually through time in both lake and coastal environments. For this purpose, we attempted both
empirical and machine learning models that relate depth information to satellite reflectance in the
areas of interest. Because bathymetry is constantly reworking, updating information is key for safe
navigation. Sentinel-2 and Landsat-8 images were selected due to their easy availability and because
of their high enough temporal resolution for mapping changes in underwater topography, allowing
for bathymetric retrieval without much complex pre-processing.

2. Materials and Methods

2.1. Study Area

The United States (US) provides an excellent case study for the development of a systematic
bathymetric retrieval approach. The governmental policy of full and open sharing, availability of
high-resolution datasets, and archiving services allow researchers to initiate projects with confidence.
Based on the availability of high-resolution bathymetric datasets, we chose three study areas in the
conterminous United States: (i) Mobile Bay, Mississippi; (ii) the area adjoining Tamba Bay; and (iii)
Lake Huron (Figure 1).

2.2. Dataset

2.2.1. Satellite Multispectral Images

The study takes advantage of the Sentinel-2 Multi-Spectral Imager (MSI) (hereafter referred to as
Sentinel-2 or S2) and Landsat-8 Operational Land Imager (OLI) (hereafter referred as Landsat-8 or
L8), which currently provide the best freely available multispectral datasets. Sentinel-2 was launched
in June 2015 from French Guiana as part of the European Copernicus program, designed by Airbus
Defence and Space for the European Space Agency (ESA). This sensor has 13 spectral bands covering
the visible, near-infrared, and shortwave infrared parts of the electromagnetic spectrum. Table 1 shows
the key summary of the 13 spectral bands of S2 sensor. Launched in February 2013, Landsat-8 acted as
a successor to the Landsat-5 and 7 missions. The L8 is superior to the Landsat-5 Thematic Mapper (TM)
and Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with incremental improvements in satellite,
sensor, transmission, reception, data processing, and data distribution technologies [39]. The temporal
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resolution of L8 is 16 days. Compared with Landsat-7, the L8 spectral bands remain similar except for
two additional bands in the blue and shortwave infrared regions of the spectrum. A summary and key
features of all eleven L8 bands are presented in Table 1.Sensors 2019, 19, x 4 of 20 
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Figure 1. Location map of study area showing (black square boxes) Mobile Bay, Mississippi, the area
adjoining Tampa Bay, and Lake Huron.

Table 1. Key summary of Landsat-8 Operational Land Imager and Sentinel-2 Multi-Spectral Imager
spectral bands, and dates of acquisition, as well as path/row and tile details of images used in this study.

Sentinel-2 Landsat-8

Band
No.

Central
Wavelength (nm)

Band Width
(nm)

Resolution
(m)

Band
No.

Central
Wavelength (nm)

Band Width
(nm)

Resolution
(m)

1 443 20 60 1 442 15 30
2 490 65 10 2 482 60 30
3 560 35 10 3 561 57 30
4 665 30 10 4 654 37 30
5 705 15 20 5 864 28 30
6 740 15 20 6 1608 84 30
7 783 20 20 7 2200 186 30
8 842 115 10 8 589 172 15

8b 865 20 20 9 1373 20 30
9 945 20 60 10 1089 59 100
10 1380 30 60 11 1200 101 100
11 1610 90 20
12 2190 180 20

Dates of acquisition S2 and L8 scenes

Mobile Bay 4 January 2016 Tile No. T16RCU 23 April 2016 Path 21 Row 39
Tampa Bay 14 February 2016 Tile No. T17RLL 20 February 2015 Path 17 Row 41
Lake Huron 29 June 2016 Tile No. T16TGP 16 April 2016 Path 20 Row 30

Sentinel 2 offers a high temporal resolution of five days at the equator compared to the 16 days of
Landsat-8. The swath width of S2 is 290 km as compared to 185 km for Landsat-8. The geometrically
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corrected S2 and L8 data, available via www.earthexplorer.gov as Level-1T (L1T) top-of-atmosphere
(TOA) reflectance images and Level-1C (L1C) TOA reflectance tiles in the Worldwide Reference System
(WRS-2) path/row coordinate system, are used in this study. Cloud-free datasets, one each for the three
study sites were downloaded for both the S2 and L8. Dates of acquisition and path/row or tile details
are also presented in Table 1.

2.2.2. Bathymetric Ddata

The Mobile Bay bathymetric dataset was developed by the National Geophysical Data Center
(NGDC), an office of the National Oceanic and Atmospheric Administration (NOAA), in March 2007.
Bathymetric datasets used in the compilation of Mobile Bay include 48 National Ocean Service (NOS)
hydrographic surveys, 25 US Army Corps of Engineers (USACE) surveys of dredged shipping channels,
and Office of Coast Survey electronic navigational chart extracted soundings in the Chandeleur Sound
region. The Tampa Bay bathymetric digital elevation model (DEM) compilation was the result of
extensive collaboration between NOAA, the US Geological Survey (USGS), and other agencies such as
federal and private companies. The bathymetry of Lake Huron was compiled as a component of an
NOAA project to rescue Great Lakes floor geological and geophysical data. The bathymetric data for
Huron were collected from USACE, the NOAA NOS, and the Canadian Hydrographic Service. These
three bathymetric models were downloaded from NOAA’s National Geophysical Data Center (NGDC)
at http://www.ngdc.noaa.gov/. Each of them was then resampled (from their native 3–65-m resolution)
to 10 and 30 m to match with Sentinel-2 and Landsat-8 native resolutions.

2.3. Empirically Derived Water Depth

The bathymetry retrieval from optical satellite remote sensing is based on the wavelength-
dependent attenuation of light in the water column [7]. It is known that shallow water absorbs less
energy than deep water and, therefore, will have higher reflectance of solar radiation and vice versa [40].
Furthermore, in shallower waters, solar radiation is reflected back to the surface after touching the
bottom depth. This water-leaving reflectance (Rrs) measured by the satellite sensor is then used to
transform it into water depth via analytical equations. However, this assumption is expected to be
valid only in shallow clear waters, because Rrs depends not only on the reflectance from the bottom
surface, but also on the absorption and scattering properties of dissolved and suspended material in the
water column. The Rrs from different spectral wavelength bands of multispectral sensors (e.g., Landsat
series, Advanced Space Borne Thermal Emission and Reflection Radiometer-ASTER, RapidEye, and
QuickBird) were implemented in previous studies to map bathymetry [7,10,13,40]. The blue and green
wavelengths are considered to be very suitable in estimating bathymetry because reflectance between
400 and 600 nm has the deepest penetration through the water column [10].

In this study, we utilized the digital number (DN) values of band 2 (blue) and band 3 (green) of
both Sentinel-2 and Landsat-8 products (Sentinel: band 2 = 490 nm and band 3 = 560 nm; Landsat:
band 2 = 482 nm and band 3 = 561 nm). For this, the top-of-atmosphere (ToA) S2 and L8 products
were firstly atmospherically corrected for the effects of atmospheric gases and aerosols to yield surface
spectral reflectance using the dark object subtraction (DOS) method. ENVI v.5.3 software was used
for pre-processing the images and for DOS calculation. In the DOS method, we assume that the dark
objects (in this study, shadows in the land area adjacent to water bodies) in an image reflect no light,
and any value captured by the satellite sensor is due to atmospheric scattering [20]. The atmospheric
scattering effect was then removed by subtracting the value captured in dark object pixels from every
pixel in the band. The corrected surface reflectance data were then used for estimating the water depth.
A flowchart of methodology adapted for SDB using the empirical approach is shown in Figure 2.

www.earthexplorer.gov
http://www.ngdc.noaa.gov/
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empirical models.

Following Pacheco et al. [7], the band ratio of blue by green (B/G) can provide satellite-derived
water depth via a linear solution of water reflectance and bathymetric depth. This spectral band-ratio
method employs an empirically derived formula to relate water depths to the ratio of the reflectance of
two spectral bands. The depth data points were extracted in the ArcGIS environment from bathymetric
LiDAR for three different sites at precisely the same locations as where the data were retrieved by
the S2 and L8 images. The points for constructing a linear model were randomly selected based on
the size of the available images and bathymetric data: 6000 for Mobile Bay, 3000 for Tampa Bay, and
5000 for Lake Huron. A limitation of this comparison is the fact that the bathymetric depth datasets
used are dated much older than the S2 and L8 scenes. Therefore, a perfect agreement between SDB
and surveyed maps is not expected, given that morphological differences are likely to occur in a
moderately energetic nearshore system comprising barrier islands and tidal inlets exposed to dynamic
oceanographic conditions.

2.4. Random Forest Model

Random forest (RF), defined as a bunch of random trees, is an ensemble learning method suitable
for regression, classification, and prediction problems [41]. The advantage of the RF model is that,
unlike linear models, it can capture non-linear interactions between variables. Additionally, it is good
at handling both numerical and categorical data. The RF model works in the following fashion: (i) it
takes a number of sub-samples from the whole dataset; (ii) at each sub-set, RF chooses a random set
of features (i.e., randomly permuted at each split); (iii) based on the random sub-set, RF estimates a
decision tree; (iv) finally, it aggregates all decision trees to form a single tree (forest). While performing
RF regression, it uses the mean-square error (MSE) splitting criterion to measure the quality of a split,
which is equal to the variance reduction.

We implemented the random forest model for SDB using the Weka open-source machine learning
software package [42]. The accuracy of machine learning models depends on the quality of data and
the selection of relevant predictor variables [37,38]. A large number of training data that cover an
objective data distribution produce the best fit result. To build the RF algorithm, we used 5000 random
points covering a broad spectrum of depth ranging from 0–30 m for Lake Huron, and 0–10 m for
Mobile Bay and Tampa Bay. Thirty percent of the sampling points were withheld from model building
to be used as a test dataset; the remaining 70% were used to build the model.

In this study, visible–near-infrared (NIR) bands of both S2 and L8 were used as predictor variables
for RF training. Additionally, we used band ratios [7], log-linear ratios [12], and log-ratios [13] as
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predictor variables. A value of 100 was empirically set to extract the random sampling from our
training dataset. The decision tree for water depth estimation was built for each sub-dataset, and its
aggregate forest was used for estimating the SDB.

2.5. Accuracy Assessment

The uncertainties derived from the satellite-derived bathymetry (SDB) were quantified by
comparing individual SDB (ZSDB) and reference LiDAR or surveyed bathymetry (ZRef) with large
sample points using the following metrics:

(i) Root-mean-square error (RMSE) is widely used for error measurements between a set of estimates
and actual values, and it is a standard measure of map accuracy [43].

RMSE =
1
N

√
(ZSDB−ZRef)2.

(ii) Mean absolute error (MAE) measures the average magnitude of errors in a set of predicted values,
without considering their direction. The RMSE will always be larger than or equal to the MAE.

MAE =
1
N

∑
|ZRef − ˆZSDB| ,

where ZSDB represents the predicted values, ZRef represents the actual values, and N is the
number of observations.

3. Results

3.1. Site-Specific Bathymetric Algorithm (Mobile Bay)

After generating the B/G model for both S2 and L8 images, 6000 random point values were
extracted from both the ratioed image and bathymetric DEM at the same place. A linear regression
model was then applied to these extracted values after filtering out the land area (positive values)
(Figure 3). Figure 3a,b show the ratioed image versus the surveyed bathymetric DEM linear regression
model for S2 and L8, respectively, for a depth up to 30 m. The R2 values obtained were 0.55 and 0.22,
respectively, for S2 and L8 images. It can be observed from the figure that, after crossing a depth
of roughly 10 m, the B/G signals start scattering (Figure 3a,b). It suggests that light penetration in
Mobile Bay is limited to 10 m. After adjustment of the depth up to 10 m in the linear model, the R2

values increased significantly (0.90 and 0.89 for S2 and L8, respectively; p < 0.001) (Figure 3c,d). This
significant increase in the R2 values indicates that the bathymetry of water bodies up to the depth of
10 m could be derived from Sentinel and Landsat images.

The equation to derive depth from S2 for the Mobile Bay area is as follows:

SDB = −52.51×
(
Rrs

B
G

)
+ 42.97. (1)

The equation to derive depth from L8 for the Mobile Bay area is as follows:

SDB = −36.45×
(
Rrs

B
G

)
+ 44.18, (2)

where SDB is the satellite-derived bathymetry, and
(
Rrs B

G

)
is the ratio of water-leaving reflectance

from the blue band to that from the green band.
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3.2. Site-Specific Bathymetric Algorithm (Tampa Bay)

For Tampa Bay, 3000 random point values were extracted from both the B/G image and bathymetric
DEM at the same place. Linear regression was then applied to the extracted values after averaging
(Figure 4). Figure 4a,b show the ratioed image versus surveyed bathymetric DEM linear regression
model for S2 and L8 images, respectively, for a depth up to 30 m. The R2 values obtained were 0.05 and
0.28, respectively, for S2 and L8 sensors. Similar to Mobile Bay, it can be observed from the figure that,
after crossing a depth of roughly 13 m, the B/G signals start scattering (Figure 4a,b), indicating that
light penetration in Tampa Bay is limited to ~13 m. After adjustment of the depth up to 10 m in the
linear model, the R2 values increased significantly (0.73 and 0.85, p < 0.001 for S2 and L8, respectively)
(Figure 4c,d).

The equation to derive depth from Sentinel-2 for the Tampa Bay area is as follows:

SDB = −102.81×
(
Rrs

B
G

)
+ 79.35. (3)

The equation to derive depth from Landsat-8 for the Tampa Bay area is as follows:

SDB = −66.05×
(
Rrs

B
G

)
+ 65.89. (4)
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3.3. Site-Specific Bathymetric Algorithm (Lake Huron)

The results obtained from Lake Huron were entirely in contrast with the results from the former
two locations. The multiple linear models applied to the 5000 random point values extracted from the
B/G band ratioed image and bathymetric DEM are shown in Figure 5. The R2 values obtained for 30 m
depth were 0.92 and 0.67, respectively, for S2 and L8 sensors (p < 0.001) (Figure 5a,b), whereas the
adjusted depth to 10 m showed a decrease in R2 value (0.90 and 0.58; p < 0.001), as shown in Figure 5c,d.
The high value of R2 between the B/G and bathymetry represented for 30 m clearly indicates the
penetration of light into deeper areas in optically clear waters such as lakes.

The equation to derive depth from Sentinel-2 for Lake Huron is as follows:

SDB = −31.14×
(
Rrs

B
G

)
+ 17.49. (5)

The equation to derive depth from Landsat-8 for Lake Huron is as follows:

SDB = −36.29×
(
Rrs

B
G

)
+ 41.49. (6)
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3.4. Combined Bathymetric Model

After obtaining the site-specific bathymetric models, the data from all three study regions were
integrated to develop the combined bathymetric algorithm to obtain the regional satellite-derived
bathymetry (Figure 6). The R2 values for the combined bathymetric model (hereafter referred to as an
integrated model (IM)) for S2 and L8 were 0.79 and 0.67, respectively (p < 0.001).

The equation to derive depth from Sentinel-2 is as follows:

SDB = −33.64×
(
Rrs

B
G

)
+ 21.84. (7)

The equation to derive depth from Landsat-8 is as follows:

SDB = −28.28×
(
Rrs

B
G

)
+ 29.14. (8)
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Figure 6. Scatter plots of blue/green (B/G) band versus surveyed depth for all three study areas:
(a) Sentinel-2 B/G vs. surveyed bathymetry up to 30 m depth; (b) Landsat-8 B/G vs. surveyed
bathymetry up to 30 m depth.

3.5. Bathymetric Mapping

Bathymetry for the three study regions was mapped using both the site-specific empirical algorithm
and the random forest model. The bathymetric maps derived from S2 and L8 satellite imagery using
the empirical approach considering the ratio of blue and green wavelengths, as well as those derived
from the random forest model, are shown in Figures 7–9. A smoothening filter was applied to the final
maps for visual comparison. Given the difference in time of acquisition of bathymetric surveys and that
of the satellite image, the direct correlation could not yield a positive result. However, RMSE, MAE,
standard deviation (σ), mean, maximum, and minimum values were calculated for the satellite-derived
bathymetry for accuracy assessment. Table 2 shows the results of statistical analysis.

The RMSEs estimated from the site-specific empirical algorithm (SSA) for Mobile Bay using 6000
random depth values were 2.26 and 2.54 m, respectively, for S2 and L8 images, whereas the same
values for the integrated model (IM) were 4.84 and 5.18 m, respectively (Table 2). Since the RMSEs
estimated for the integrated model for both sensors were substantially high (4.84 and 5.18 m), they
were not shown on the maps. As observed, significant differences occurred in areas with depths of
2–4 m and 6–8 m (Figure 7a–e, and Figure 10a). Up to 6 m, the S2 SSA algorithm overestimated the
depth values and, for depths more than 6 m, the opposite ensued. When using the RF model, the RMSE
was considerably improved. For Sentinel data, the estimated RMSE from RF was 1.49 m, whereas,
for Landsat data, the RMSE (1.13 m) was even lower than the S2.

For Tampa Bay, the RMSEs estimated from 3000 random points were 2.80, 2.62, 2.50, and 5.67 m,
respectively, for S2 SSA, S2 IM, L8 SSA, and L8 IM. It can be seen from Figure 8a–c and the statistical
analysis (Table 2) that L8 SSA-derived bathymetry has the edge over the S2 SSA model. Nevertheless,
S2 SSA also produced a good representation of bottom topography (Figures 8b and 10b) with an
MAE of only 0.58 m. The random forest model, on the other hand, produced a more accurate SDB
(Figure 8d–e), with RMSE values of only 1.95 m (S2) and 1.45 m (L8).

The bathymetric maps produced for Lake Huron using S2 SSA and L8 RF were found to be a close
approximation of the actual bottom topography (Figure 9a–e). The RMSEs estimated for S2 SSA and
L8 RF were 1.99 and 1.38, respectively. The differences were concentrated in the 0–3 m class, near the
southwestern region (Figure 10c). The other models showed RMSEs of 3.30, 4.74, 5.07, and 1.44 m,
respectively, for S2 IM, L8 SSA, L8 IM, and S2 RF. Again, because of the larger MAEs and RMSEs,
the integrated model results were not shown on the maps.
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Table 2. Statistical analysis of accuracy assessment from different satellite-derived bathymetric
models (RMSE—root-mean-square error; MAX—maximum; MIN—minimum; MEAN—average;
STD—standard deviation; MAE—mean absolute error; SSA—empirically derived site-specific algorithm;
IM—empirically derived integrated model; S2—Sentinel-2; L8—Landsat-8; RF—random forest).
All values are in meters (m).

Mobile Bay

Empirical Model Random Forest

Surveyed S2 SSA S2 IM L8 SSA L8 IM S2 RF L8 RF

RMSE 2.26 4.84 2.54 5.18 1.49 1.13
MAX −10.00 −13.32 −14.48 −10. 0 −13.94 −9.55 −9.43
MIN 0.00 3.92 6.25 −0.40 5.45 −0.56 −0.45

MEAN −4.58 −5.51 −9.21 −5.39 −9.28 −4.42 −4.64
STD 2.20 2.79 1.78 2.71 2.25 1.66 1.89
MAE 0.93 4.63 0.81 4.70 1.10 0.77

Tampa Bay

Empirical Model Random Forest

Surveyed S2 SSA S2 IM L8 SSA L8 IM S2 RF L8 RF

RMSE 2.80 2.62 2.50 5.67 1.95 1.45
MAX −29.63 −32.63 −14.80 −19.87 −7.58 −18.39 −20.83
MIN 0.00 10.36 3.93 4.09 2.68 −0.55 −0.70

MEAN −7.46 −6.88 −6.37 −7.22 −2.16 −7.43 −7.43
STD 2.82 3.25 1.06 3.73 1.59 2.17 2.37
MAE 0.58 1.09 0.24 5.30 1.25 0.86

Lake Huron

Empirical Model Random Forest

Surveyed S2 SSA S2 IM L8 SSA L8 IM S2 RF L8 RF

RMSE 1.99 3.30 4.74 5.07 1.44 1.38
MAX −18.79 −17.07 −18.68 −22.19 −20.50 −19.38 −15.10
MIN 0.00 9.55 9.87 7.30 5.06 −0.78 −0.10

MEAN −5.30 −2.61 −4.93 −7.55 −9.38 −5.56 −5.21
STD 3.28 4.25 6.78 4.90 4.25 2.80 2.85
MAE 0.07 2.22 0.79 2.23 0.96 0.93
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Figure 7. Bathymetric maps of Mobile Bay, Mississippi: (a) surveyed bathymetry; (b) Sentinel-2
derived bathymetry from empirical approach; (c) Landsat-8 derived bathymetry from empirical
approach; (d) Sentinel-2 derived bathymetry from random forest; (e) Landsat-8 derived bathymetry
from random forest.
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Figure 9. Bathymetric maps of Lake Huron: (a) surveyed bathymetry; (b) Sentinel-2 derived bathymetry
from empirical approach; (c) Landsat-8 derived bathymetry from empirical approach; (d) Sentinel-2
derived bathymetry from random forest; (e) Landsat-8 derived bathymetry from random forest.
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To make a meaningful comparison of the observed bathymetry with the modeled bathymetry, a 
longitudinal profile analysis was carried out. Because the RMSEs estimated for the integrated model 
were larger than expected, the profiles were only extracted from the empirically derived bathymetry 
SSA and the random forest model. For this, using Environmental Systems Research Institute’s (ESRI) 
ArcGIS, we created line shapefiles for the study region perpendicular to the shoreline. Points along 
the line were then made at 90-m spacing. Finally, depth values were extracted for each point from 
the surveyed map, empirically derived bathymetry, and RF-derived bathymetry. Spikes were 
observed in the S2 SDB because of the higher spatial resolution. Therefore a 9 × 9 window averaging 
was applied to the S2 derived bathymetry for smoothening the profile. A total of six profiles were 
extracted for the three study areas (Figure 11).  

Figures 11a,d,e report the representative bathymetric profiles for Tampa Bay. Bathymetric 
profiles derived for Mobile Bay are shown in Figures 11b,f,g, and those for Lake Huron are shown in 
Figures 11c,h,i. Results show that the RF-derived bathymetric longitudinal profiles exhibited a decent 
match with the actual profiles (Figure 11). This is a good first-order indication that the RF 
outperformed the empirical algorithm, and can provide a reasonable estimate of the actual 
bathymetry. These profiles had at worst 2-m differences in depth. A comparative assessment of S2 
and L8 suggests that the L8 RF algorithm-derived profile had the closest match with the actual profile, 
followed by the S2 RF algorithm and the S2 SSA algorithm. The worst-case scenario was observed for 
the L8 SSA algorithm-derived profiles for all three study areas. Nevertheless, these six profiles 
followed the general trend of observed bathymetry. 

Figure 10. Histogram of depth classes for comparison between different bathymetric maps: (a) Mobile
Bay; (b) Tampa Bay; (c) Lake Huron.

3.6. Bathymetric Profile Analysis

To make a meaningful comparison of the observed bathymetry with the modeled bathymetry,
a longitudinal profile analysis was carried out. Because the RMSEs estimated for the integrated model
were larger than expected, the profiles were only extracted from the empirically derived bathymetry
SSA and the random forest model. For this, using Environmental Systems Research Institute’s (ESRI)
ArcGIS, we created line shapefiles for the study region perpendicular to the shoreline. Points along the
line were then made at 90-m spacing. Finally, depth values were extracted for each point from the
surveyed map, empirically derived bathymetry, and RF-derived bathymetry. Spikes were observed in
the S2 SDB because of the higher spatial resolution. Therefore a 9 × 9 window averaging was applied
to the S2 derived bathymetry for smoothening the profile. A total of six profiles were extracted for the
three study areas (Figure 11).

Figure 11a,d,e report the representative bathymetric profiles for Tampa Bay. Bathymetric profiles
derived for Mobile Bay are shown in Figure 11b,f,g, and those for Lake Huron are shown in Figure 11c,h,i.
Results show that the RF-derived bathymetric longitudinal profiles exhibited a decent match with
the actual profiles (Figure 11). This is a good first-order indication that the RF outperformed the
empirical algorithm, and can provide a reasonable estimate of the actual bathymetry. These profiles
had at worst 2-m differences in depth. A comparative assessment of S2 and L8 suggests that the
L8 RF algorithm-derived profile had the closest match with the actual profile, followed by the S2
RF algorithm and the S2 SSA algorithm. The worst-case scenario was observed for the L8 SSA
algorithm-derived profiles for all three study areas. Nevertheless, these six profiles followed the
general trend of observed bathymetry.
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Figure 11. Bathymetric profiles extracted from the empirical and random forest models using Sentinel-2
and Landsat-8 images for Tampa Bay (a,d,e), Mobile Bay (b,f,g), and Lake Huron (c,h,i).
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4. Discussion

This study sought to explore the utility of the Sentinel-2 and Landsat-8 multispectral sensors in
estimating bathymetric contours across a wide range of aquatic environments. We compared blue–green
ratio empirical model findings with those obtained using a data-driven random forest model, to
understand the capability of big data for improving the accuracy of satellite-derived bathymetric
estimations. This work shows that both Sentinel-2 and Landsat-8 can estimate SDB up to 10 m in
coastal waters and up to 30 m in lake waters. As in other earlier related studies, researchers mainly
focused on aquatic areas in which there exists not much sediment–water interference for deriving SDB.
This is because the depth retrieval in complex waters is limited by water turbidity caused by wave
action, suspended sediment, and particulate matter, which limits the penetration of light [7]. However,
this study proves that it is still possible to build a predictive model for situations like Mobile Bay and
Tamba Bay (Figures 7 and 8), where the environment is more complicated.

The RF method significantly improved bathymetric retrieval when compared to the empirical
approach. In particular, the RF results from Landsat-8-retrieved SDB profiles were very well matched
with the actual bathymetric profiles (Figure 11). In terms of implementation, the empirical blue–green
ratio-based approach has several advantages over the RF method. The ratio model is simple and
straightforward and does not require large computation and pre-processing time, unlike its counterpart
data-driven models. Moreover, they are descriptive. While data-driven models require a significant
amount of pre-processing time, the results are more accurate than regression models [17]. Recently,
researchers paid more attention to big data with machine learning for producing accurate bathymetric
outputs. Artificial neural networks and support vector machines were successfully used in this regard
for estimating the bathymetric depths for different aquatic environments [36,44]. Their analyses also
agree with our findings that machine learning models increase bathymetry retrieval accuracy over
traditional regression methods.

The increased accuracy of machine learning models compared to the empirical approach can be
attributed to the higher number of input data. Furthermore, the accuracy increases sufficiently when
providing large training samples [45,46]. Thus, the most porspective way to improve the accuracy
of SDB from a machine learning model is to provide image data for all wavelength bands, their
band ratios, and log-linear ratios as inputs to the model; however, this is a cumbersome process.
Therefore, if the consideration is not solely based on the overall performance but on the balance of
overall performance and the computational time, the empirical model is suggested for the first-order
indication of bathymetric retrieval. On the other hand, RF models offer improved performance with
decent interpretability but require additional computation.

5. Conclusions

The bathymetric maps generated by the empirical approach and RF algorithm were by large
effective in mapping the bottom topography of Mobile Bay, Tampa Bay, and Lake Huron, despite
distinct differences in the morphometry and location. Inherent errors, smoothening, and morphological
variation happened for the time differences between the surveyed bathymetry data, and this study
was not considered in our analysis. Therefore, it is reasonable to assume that, if outliers were removed,
the SSA algorithm and RF model could retrieve depths between 0 and 10 m for coastal areas, and
up to 30 m for lake regions in optically clear waters. The random forest model outperformed the
empirical algorithms for deriving SDB. Although there was no exact match with the observed profiles,
it is clear that, even if the empirical approach is used, the worst-case scenario is a 3-m difference for
coastal areas using the Sentinel sensor. To validate the applicability of this method to other regions and
for the development of regional bathymetric models, we plan to investigate ways of improving the
current model by analyzing more images from different periods, in particular, to examine methods for
addressing suspended sediment particles. The results of this study are an excellent indication that
both Sentinel-2 and Landsat-8 can be utilized for remotely sensed bathymetry extraction for coastal
and lake areas and to complement the data from survey sources.



Sensors 2019, 19, 2788 18 of 20

Author Contributions: Conceptualization, A.P.Y. and J.D.; methodology, A.P.Y.; software, R.A.; validation, A.P.Y.,
J.D., and R.A.; formal analysis, A.P.Y.; investigation, A.P.Y.; resources, X.S.; writing—original draft preparation,
A.P.Y., J.D., and X.S.; writing—review and editing, R.A.; supervision, R.A.; project administration, X.S.

Funding: This research received no external funding.

Acknowledgments: Authors are thankful to NOAA’s NGDC for providing the freely available bathymetric DEMs,
and NASA, USGS, and ESA for access to the Landsat-8 and Sentinel-2 satellite images. The authors thank the three
anonymous reviewers for their constructive suggestions, which significantly helped in improving the quality of
the paper. This research is partially supported by Japan Society for the Promotion of Science.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cooper, J.; Navas, F. Natural bathymetric change as a control on century-scale shoreline behavior. Geology
2004, 32, 513–516. [CrossRef]

2. Clarke, J.E.H. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow
characteristics. Nat. Commun. 2016, 7, 11896. [CrossRef] [PubMed]

3. Simons, D.; Richardson, E. Resistance to Flow in Alluvial Channels; USGS Professional Paper 422-J; US
Government Printing Office: Washington, DC, USA, 1966. [CrossRef]

4. Smith, D.P.; Ruiz, G.; Kvitek, R.; Iampietro, P.J. Semiannual patterns of erosion and deposition in upper
Monterey Canyon from serial multibeam bathymetry. Gsa Bull. 2005, 117, 1123–1133. [CrossRef]

5. Saylam, K.; Brown, R.A.; Hupp, J.R. Assessment of depth and turbidity with airborne Lidar bathymetry
and multiband satellite imagery in shallow water bodies of the Alaskan North Slope. Int. J. Appl. Earth
Obs. Geoinf. 2017, 58, 191–200. [CrossRef]

6. Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A physics based retrieval
and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 2009, 113,
755–770. [CrossRef]

7. Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, Ó. Retrieval of nearshore bathymetry from Landsat 8 images:
A tool for coastal monitoring in shallow waters. Remote Sens. Environ. 2015, 159, 102–116. [CrossRef]

8. Maxwell, S.M.; Hazen, E.L.; Lewison, R.L.; Dunn, D.C.; Bailey, H.; Bograd, S.J.; Briscoe, D.K.; Fossette, S.;
Hobday, A.J.; Bennett, M.; et al. Dynamic ocean management: Defining and conceptualizing real-time
management of the ocean. Mar. Policy 2015, 58, 42–50. [CrossRef]

9. Kachelriess, D.; Wegmann, M.; Gollock, M.; Pettorelli, N. The application of remote sensing for marine
protected area management. Ecol. Indic. 2014, 36, 169–177. [CrossRef]

10. Monteys, X.; Harris, P.; Caloca, S.; Cahalane, C. Spatial prediction of coastal bathymetry based on multispectral
satellite imagery and multibeam data. Remote Sens. 2015, 7, 13782–13806. [CrossRef]

11. Carron, M.J.; Vogt, P.R.; Jung, W.-Y. A proposed international long-term project to systematically map the
world’s ocean floors from beach to trench: GOMaP (Global Ocean Mapping Program). Int. Hydrogr. Rev.
2001, 2, 49–50.

12. Lyzenga, D.R. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int.
J. Remote Sens. 1985, 6, 115–125. [CrossRef]

13. Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery
over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [CrossRef]

14. Doxani, G.; Papadopoulou, M.; Lafazani, P.; Pikridas, C.; Tsakiri-Strati, M. Shallow-water bathymetry over
variable bottom types using multispectral Worldview-2 image. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2012, 39, 159–164. [CrossRef]

15. Eugenio, F.; Marcello, J.; Martin, J. High-resolution maps of bathymetry and benthic habitats in shallow-water
environments using multispectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53,
3539–3549. [CrossRef]

16. Evagorou, E.G.; Mettas, C.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, D.G. Bathymetric maps from
multi-temporal analysis of Sentinel-2 data: The case study of Limassol, Cyprus. Adv. Geosci. 2019, 45,
397–407. [CrossRef]

17. Dickens, K.; Armstrong, A. Application of Machine Learning in Satellite Derived Bathymetry and Coastline
Detection. SMU Data Sci. Rev. 2019, 2, 4.

http://dx.doi.org/10.1130/G20377.1
http://dx.doi.org/10.1038/ncomms11896
http://www.ncbi.nlm.nih.gov/pubmed/27283503
http://dx.doi.org/10.3133/pp422J
http://dx.doi.org/10.1130/B25510.1
http://dx.doi.org/10.1016/j.jag.2017.02.012
http://dx.doi.org/10.1016/j.rse.2008.12.003
http://dx.doi.org/10.1016/j.rse.2014.12.004
http://dx.doi.org/10.1016/j.marpol.2015.03.014
http://dx.doi.org/10.1016/j.ecolind.2013.07.003
http://dx.doi.org/10.3390/rs71013782
http://dx.doi.org/10.1080/01431168508948428
http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0547
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B8-159-2012
http://dx.doi.org/10.1109/TGRS.2014.2377300
http://dx.doi.org/10.5194/adgeo-45-397-2019


Sensors 2019, 19, 2788 19 of 20

18. Sandwell, D.T.; Smith, W.H.; Gille, S.; Kappel, E.; Jayne, S.; Soofi, K.; Coakley, B.; Géli, L. Bathymetry from
space: Rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus Geosci.
2006, 338, 1049–1062. [CrossRef]

19. Dixon, T.H.; Naraghi, M.; McNutt, M.; Smith, S. Bathymetric prediction from Seasat altimeter data. J. Geophys.
Res. Oceans 1983, 88, 1563–1571. [CrossRef]

20. Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Assessment of atmospheric correction methods for Landsat TM
data applicable to Amazon basin LBA research. Int. J. Remote Sens. 2002, 23, 2651–2671. [CrossRef]

21. Jena, B.; Kurian, P.; Swain, D.; Tyagi, A.; Ravindra, R. Prediction of bathymetry from satellite altimeter based
gravity in the Arabian Sea: Mapping of two unnamed deep seamounts. Int. J. Appl. Earth Obs. Geoinf. 2012,
16, 1–4. [CrossRef]

22. Guenther, G.C. Airborne lidar bathymetry. Digit. Elev. Model Technol. Appl. Dem Users Man. 2007, 2, 253–320.
23. Bills, B.G.; Borsa, A.A.; Comstock, R.L. MISR-based passive optical bathymetry from orbit with few-cm level

of accuracy on the Salar de Uyuni, Bolivia. Remote Sens. Environ. 2007, 107, 240–255. [CrossRef]
24. Arsen, A.; Crétaux, J.-F.; Berge-Nguyen, M.; del Rio, R. Remote sensing-derived bathymetry of lake Poopó.

Remote Sens. 2014, 6, 407–420. [CrossRef]
25. Gao, J. Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Prog. Phys.

Geogr. 2009, 33, 103–116. [CrossRef]
26. Hodúl, M.; Bird, S.; Knudby, A.; Chénier, R. Satellite derived photogrammetric bathymetry. ISPRS J.

Photogramm. Remote Sens. 2018, 142, 268–277. [CrossRef]
27. Leon, J.X.; Cohen, T. An improved bathymetric model for the modern and palaeo Lake Eyre. Geomorphology

2012, 173, 69–79. [CrossRef]
28. Clark, R.K.; Fay, T.H.; Walker, C.L. Bathymetry calculations with Landsat 4 TM imagery under a generalized

ratio assumption. Appl. Opt. 1987, 26, 4036–4038. [CrossRef] [PubMed]
29. Bustamante, J.; Pacios, F.; Díaz-Delgado, R.; Aragonés, D. Predictive models of turbidity and water depth

in the Doñana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 2009, 90, 2219–2225.
[CrossRef] [PubMed]

30. Lyons, M.; Phinn, S.; Roelfsema, C. Integrating Quickbird multi-spectral satellite and field data: Mapping
bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007. Remote
Sens. 2011, 3, 42–64. [CrossRef]

31. Mohamed, H.; Negm, A.; Zahran, M.; Saavedra, O.C. Bathymetry determination from high resolution
satellite imagery using ensemble learning algorithms in Shallow Lakes: Case study El-Burullus Lake. Int. J.
Environ. Sci. Dev. 2016, 7, 295. [CrossRef]

32. Lesser, M.; Mobley, C. Bathymetry, water optical properties, and benthic classification of coral reefs using
hyperspectral remote sensing imagery. Coral Reefs 2007, 26, 819–829. [CrossRef]

33. Legleiter, C.J.; Overstreet, B.T.; Glennie, C.L.; Pan, Z.; Fernandez-Diaz, J.C.; Singhania, A. Evaluating the
capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring
channel morphology in two distinct river environments. Earth Surf. Process. Landf. 2016, 41, 344–363.
[CrossRef]

34. Liu, S.; Gao, Y.; Zheng, W.; Li, X. Performance of two neural network models in bathymetry. Remote Sens. Lett.
2015, 6, 321–330. [CrossRef]

35. Wang, L.; Liu, H.; Su, H.; Wang, J. Bathymetry retrieval from optical images with spatially distributed
support vector machines. Gisci. Remote Sens. 2019, 56, 323–337. [CrossRef]

36. Misra, A.; Vojinovic, Z.; Ramakrishnan, B.; Luijendijk, A.; Ranasinghe, R. Shallow water bathymetry mapping
using Support Vector Machine (SVM) technique and multispectral imagery. Int. J. Remote Sens. 2018, 39,
4431–4450. [CrossRef]

37. Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine
Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [CrossRef]

38. Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Khosravi, K.; Yang, Y.;
Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced
landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.crte.2006.05.014
http://dx.doi.org/10.1029/JC088iC03p01563
http://dx.doi.org/10.1080/01431160110109642
http://dx.doi.org/10.1016/j.jag.2011.11.008
http://dx.doi.org/10.1016/j.rse.2006.11.006
http://dx.doi.org/10.3390/rs6010407
http://dx.doi.org/10.1177/0309133309105657
http://dx.doi.org/10.1016/j.isprsjprs.2018.06.015
http://dx.doi.org/10.1016/j.geomorph.2012.05.029
http://dx.doi.org/10.1364/AO.26.4036_1
http://www.ncbi.nlm.nih.gov/pubmed/20490179
http://dx.doi.org/10.1016/j.jenvman.2007.08.021
http://www.ncbi.nlm.nih.gov/pubmed/18395320
http://dx.doi.org/10.3390/rs3010042
http://dx.doi.org/10.7763/IJESD.2016.V7.787
http://dx.doi.org/10.1007/s00338-007-0271-5
http://dx.doi.org/10.1002/esp.3794
http://dx.doi.org/10.1080/2150704X.2015.1034885
http://dx.doi.org/10.1080/15481603.2018.1538620
http://dx.doi.org/10.1080/01431161.2017.1421796
http://dx.doi.org/10.3390/rs11101155
http://dx.doi.org/10.1016/j.scitotenv.2019.01.221
http://www.ncbi.nlm.nih.gov/pubmed/30690368


Sensors 2019, 19, 2788 20 of 20

39. Roy, D.P.; Wulder, M.; Loveland, T.R.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.;
Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens.
Environ. 2014, 145, 154–172. [CrossRef]

40. Pope, A.; Scambos, T.A.; Moussavi, M.; Tedesco, M.; Willis, M.; Shean, D.; Grigsby, S. Estimating supraglacial
lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. Cryosphere
2016, 10, 15. [CrossRef]

41. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
42. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:

An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
43. Fisher, P.F.; Tate, N.J. Causes and consequences of error in digital elevation models. Prog. Phys. Geogr. 2006,

30, 467–489. [CrossRef]
44. Makboul, O.; Negm, A.; Mesbah, S.; Mohasseb, M. Performance assessment of ANN in estimating remotely

sensed extracted bathymetry. Case study: Eastern harbor of alexandria. Procedia Eng. 2017, 181, 912–919.
[CrossRef]

45. Dou, J.; Yamagishi, H.; Pourghasemi, H.R.; Yunus, A.P.; Song, X.; Xu, Y.; Zhu, Z. An integrated artificial
neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat. Hazards 2015,
78, 1749–1776. [CrossRef]

46. Dou, J.; Chang, K.T.; Chen, S.; Yunus, A.P.; Liu, J.K.; Xia, H.; Zhu, Z. Automatic Case-Based Reasoning
Approach for Landslide Detection: Integration of Object-Oriented Image Analysis and a Genetic Algorithm.
Remote Sens. 2015, 7, 4318–4342. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2014.02.001
http://dx.doi.org/10.5194/tc-10-15-2016
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1191/0309133306pp492ra
http://dx.doi.org/10.1016/j.proeng.2017.02.486
http://dx.doi.org/10.1007/s11069-015-1799-2
http://dx.doi.org/10.3390/rs70404318
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Dataset 
	Satellite Multispectral Images 
	Bathymetric Ddata 

	Empirically Derived Water Depth 
	Random Forest Model 
	Accuracy Assessment 

	Results 
	Site-Specific Bathymetric Algorithm (Mobile Bay) 
	Site-Specific Bathymetric Algorithm (Tampa Bay) 
	Site-Specific Bathymetric Algorithm (Lake Huron) 
	Combined Bathymetric Model 
	Bathymetric Mapping 
	Bathymetric Profile Analysis 

	Discussion 
	Conclusions 
	References

