Logarithmic-Domain Array Interpolation for Improved Direction of Arrival Estimation in Automotive Radars
<p>Two types of interpolation errors from <math display="inline"><semantics> <msup> <mi mathvariant="bold">T</mi> <mo>*</mo> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi mathvariant="bold">V</mi> <mo>*</mo> </msup> </semantics></math>.</p> "> Figure 2
<p>Normalized Bartlett pseudospectrums for two adjacent targets located at <math display="inline"><semantics> <mrow> <mo>[</mo> <mo>−</mo> <msup> <mn>3.5</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <msup> <mn>2.5</mn> <mo>∘</mo> </msup> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Resolution probabilities versus SNR (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>).</p> "> Figure 4
<p>Root mean squared errors versus SNR (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Resolution probabilities versus the number of time samples (SNR is 10 dB).</p> "> Figure 6
<p>Root mean squared errors versus the number of time samples (SNR is 10 dB).</p> "> Figure 7
<p>Normalized pseudospectrums for three targets located at <math display="inline"><semantics> <mrow> <mo>[</mo> <mo>−</mo> <msup> <mn>8</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <msup> <mn>1.5</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <msup> <mn>7.5</mn> <mo>∘</mo> </msup> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Resolution probabilities versus SNR (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>).</p> "> Figure 9
<p>Root mean squared errors versus SNR (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>).</p> "> Figure 10
<p>Resolution probabilities versus SNR (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>).</p> "> Figure 11
<p>Root mean squared errors versus SNR (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>).</p> "> Figure 12
<p>Measurement environment of two target vehicles located at <math display="inline"><semantics> <mrow> <mo>[</mo> <mo>−</mo> <msup> <mn>1.7</mn> <mo>∘</mo> </msup> <mo>,</mo> <mspace width="0.166667em"/> <msup> <mn>4.6</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>].</p> "> Figure 13
<p>Measurement environment of two target vehicles (expressway).</p> ">
Abstract
:1. Introduction
2. Fundamentals of Array Interpolation
2.1. Signal Model for the Array Antenna
2.2. Conventional Array Interpolation Method
3. Logarithmic-Domain Array Interpolation
3.1. Proposed Array Interpolation Method
3.2. Enhanced Received Signal Interpolation
4. Simulation Results
5. Measurement Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DOA | Direction of arrival |
LLS | Linear least squares |
FOV | Field of view |
LRR | Long-range radar |
SNR | Signal-to-noise ratio |
RMSE | Root mean squared error |
MUSIC | Multiple signal classification |
TLS ESPRIT | Total least squares estimation of signal parameters via rotational invariance techniques |
Appendix A
References
- Cao, M.-Y.; Huang, L.; Xie, W.-X.; So, H.C. Interpolation array technique for direction finding via Taylor series fitting. In Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China, 12–15 July 2015. [Google Scholar]
- Doblinger, G. Optimized design of interpolated array and sparse array wideband beamformers. In Proceedings of the 16th European Signal Processing Conference, Lausanne, Switzerland, 25–29 August 2008. [Google Scholar]
- Zhou, C.; Gu, Y.; Shi, Z.; Zhang, Y.D. Off-grid direction-of-arrival estimation using coprime array interpolation. IEEE Signal Process. Lett. 2018, 11, 1710–1714. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 2018, 11, 5956–5971. [Google Scholar] [CrossRef]
- Sim, H.; Lee, S.; Kang, S.; Kim, S.-C. Enhanced DOA estimation using linearly predicted array expansion for automotive radar systems. IEEE Access 2019, 4, 47714–47727. [Google Scholar] [CrossRef]
- Friedlander, B. Direction finding using an interpolated array. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Munich, Germany, 21–24 April 1990. [Google Scholar]
- Weiss, A.J.; Gavish, M. Direction finding using ESPRIT with interpolated arrays. IEEE Trans. Signal Process. 1991, 6, 1473–1478. [Google Scholar] [CrossRef]
- Friedlander, B. The root-MUSIC algorithm for direction finding with interpolated arrays. ELSEVIER Signal Process. 1993, 1, 15–29. [Google Scholar] [CrossRef]
- Friedlander, B.; Weiss, A.J. Direction finding for wide-band signals using an interpolated array. IEEE Trans. Signal Process. 1993, 4, 1618–1634. [Google Scholar] [CrossRef]
- Tuncer, T.E.; Yasar, T.K.; Friedlander, B. Direction of arrival estimation for nonuniform linear arrays by using array interpolation. Radio Sci. 2008, 8, 1–11. [Google Scholar] [CrossRef]
- Kim, K.; Sarkar, T.K.; Palma, M.S. Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatterers. IEEE Trans. Antennas Propag. 2002, 5, 582–590. [Google Scholar]
- Kang, S.; Lee, S.; Lee, J.-E.; Kim, S.-C. Improving the performance of DOA Estimation using virtual antenna in automotive radar. IEICE Trans. Commun. 2017, 5, 771–778. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, Y.-J.; Kang, S.; Lee, J.-E.; Kim, S.-C. Enhanced performance of MUSIC algorithm using spatial interpolation in automotive FMCW radar systems. IEICE Trans. Commun. 2018, 1, 163–175. [Google Scholar] [CrossRef]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 7, 67–94. [Google Scholar] [CrossRef]
- Moffet, A.T. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 3, 172–175. [Google Scholar] [CrossRef]
- Vertatschitsch, E.; Haykin, S. Nonredundant arrays. Proc. IEEE 1986, 1, 217. [Google Scholar] [CrossRef]
- Kassis, C.E.; Picheral, J.; Mokbel, C. Advantages of nonuniform arrays using root-MUSIC. ELSEVIER Signal Process. 2010, 2, 689–695. [Google Scholar] [CrossRef]
- Mhamdi, A.; Samet, A. Direction of arrival estimation for nonuniform linear antenna. In Proceedings of the IEEE International Conference on Communications, Computing and Control Applications (CCCA), Hammamet, Tunisia, 3–5 March 2011. [Google Scholar]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 3, 276–280. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automatic Control 1974, 12, 716–723. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 4, 387–392. [Google Scholar] [CrossRef]
- Pan, V.Y.; Chen, Z.Q. The complexity of the matrix eigenproblem. In Proceedings of the Proceedings of the 31st annual ACM Symposium on Theory Of Computing (STOC), Marina del Rey, CA, USA, 5–7 May 1999. [Google Scholar]
- Rubsamen, M.; Gershman, A.B. Direction-of-arrival estimation for nonuniform sensor arrays: From manifold separation to Fourier domain MUSIC methods. IEEE Trans. Signal Process. 2009, 2, 588–599. [Google Scholar] [CrossRef]
- Ottersten, B.; Viberg, M.; Kailath, T. Performance analysis of the total Least squares ESPRIT algorithm. IEEE Trans. Signal Process. 1991, 5, 1122–1135. [Google Scholar] [CrossRef]
- Yeom, D.-J.; Park, S.-H.; Kim, J.-R.; Lee, M.-J. Performance analysis of beamspace MUSIC with beamforming angle. In Proceedings of the 8th IEEE International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, Australia, 15–17 December 2014. [Google Scholar]
- Diewald, F.; Klappstein, J.; Sarholz, F.; Dickmann, J.; Dietmayer, K. Radar-interference-based bridge identification for collision avoidance systems. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011. [Google Scholar]
- Lee, S.; Lee, B.-H.; Lee, J.-E.; Kim, S.-C. Statistical characteristic-based road structure recognition in automotive FMCW radar systems. IEEE Trans. Intell. Transp. Syst. (Early Access) 2018, 9, 1–12. [Google Scholar] [CrossRef]
DOA Estimation Method | (%) | RMSE () |
---|---|---|
Conventional Bartlett | 0 | 4.28 |
Bartlett with and | 74.9 | 2.67 |
Bartlett with and | 99.4 | 0.64 |
Bartlett with and | 99.9 | 0.45 |
DOA Estimation Method | (%) | RMSE () |
---|---|---|
Conventional Bartlett | 0 | 5.72 |
Bartlett with and | 0.67 | 6.20 |
Bartlett with and | 46.7 | 4.65 |
Bartlett with and | 68.0 | 3.90 |
DOA Estimation Method | (%) | RMSE () |
---|---|---|
Conventional Bartlett | 0 | 7.83 |
Bartlett with and | 1.25 | 6.57 |
Bartlett with and | 43.3 | 4.98 |
Bartlett with and | 65.1 | 4.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, S.-C. Logarithmic-Domain Array Interpolation for Improved Direction of Arrival Estimation in Automotive Radars. Sensors 2019, 19, 2410. https://doi.org/10.3390/s19102410
Lee S, Kim S-C. Logarithmic-Domain Array Interpolation for Improved Direction of Arrival Estimation in Automotive Radars. Sensors. 2019; 19(10):2410. https://doi.org/10.3390/s19102410
Chicago/Turabian StyleLee, Seongwook, and Seong-Cheol Kim. 2019. "Logarithmic-Domain Array Interpolation for Improved Direction of Arrival Estimation in Automotive Radars" Sensors 19, no. 10: 2410. https://doi.org/10.3390/s19102410
APA StyleLee, S., & Kim, S.-C. (2019). Logarithmic-Domain Array Interpolation for Improved Direction of Arrival Estimation in Automotive Radars. Sensors, 19(10), 2410. https://doi.org/10.3390/s19102410