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Abstract: Three Dimensional (3D) models are widely used in clinical applications, geosciences,
cultural heritage preservation, and engineering; this, together with new emerging needs such as
building information modeling (BIM) develop new data capture techniques and devices with a
low cost and reduced learning curve that allow for non-specialized users to employ it. This paper
presents a simple, self-assembly device for 3D point clouds data capture with an estimated base
price under €2500; furthermore, a workflow for the calculations is described that includes a Visual
SLAM-photogrammetric threaded algorithm that has been implemented in C++. Another purpose of
this work is to validate the proposed system in BIM working environments. To achieve it, in outdoor
tests, several 3D point clouds were obtained and the coordinates of 40 points were obtained by means
of this device, with data capture distances ranging between 5 to 20 m. Subsequently, those were
compared to the coordinates of the same targets measured by a total station. The Euclidean average
distance errors and root mean square errors (RMSEs) ranging between 12–46 mm and 8–33 mm
respectively, depending on the data capture distance (5–20 m). Furthermore, the proposed system
was compared with a commonly used photogrammetric methodology based on Agisoft Metashape
software. The results obtained demonstrate that the proposed system satisfies (in each case) the
tolerances of ‘level 1’ (51 mm) and ‘level 2’ (13 mm) for point cloud acquisition in urban design and
historic documentation, according to the BIM Guide for 3D Imaging (U.S. General Services).

Keywords: self-assembly device; 3D point clouds; accuracy analysis; VSLAM-photogrammetric
algorithm; portable mobile mapping system; low-cost device; BIM

1. Introduction

The tridimensional modeling of an object starts with its original design or with the process of
acquiring the data necessary for its geometric reconstruction. In both cases, the result is a 3D virtual
model that can be visualized and analyzed interactively on a computer [1,2]. In many cases, the process
continues with the materialization of the model in the form of a prototype, which serves as a sample of
what will be the final product, allowing us to check if its design is correct, thus changing the traditional
manufacturing or construction industry [3–5].

The applications of 3D models (virtual or prototype) are numerous and widely used; they are
usually used in the scope of clinical applications [6,7], geosciences [8–13], cultural heritage
preservation [14,15] and engineering [16].

In this context, to address this wide variety of application areas, both data capture techniques and
devices, as well as the specific software for data processing and management tend to be simplified.
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This is done in order to be accessible to the greatest number of users, even with limited knowledge in
3D measurement technologies.

In this sense, the classical methods of photogrammetry are combined with new techniques
and procedures which are usually adopted for other areas [17], such as visual odometry (VO),
the simultaneous localization and mapping (SLAM) and the visual slam (VSLAM) techniques. These are
normally used to solve localization and mapping problems in the areas of robotics and autonomous
systems [18–21], but also the combination of photogrammetry techniques with methodologies based
on instruments like terrestrial or aerial laser scanners have obtained successful results [22,23].

These combined methods provide support and analytical robustness for the development of
low/middle-cost capture systems, usually based on tablets or mobile devices that incorporate inertial
sensors, absolute positioning and low cost cameras which can achieve medium 3D positional accuracy
scanning, in compliance with technical requirements of a wide range of applications at a low cost
and reduced learning curve [24–28]. As a result, handheld mobile mapping systems have appeared
in recent years, using different technologies to perform 3D reconstructions that use fully automated
processes [27,28]. Among which we can find systems based exclusively on images, requiring a
fully automated process, taking into account the usual technical constraints in photogrammetry,
and the free user movements in data capture [17]. In this field, different lines of research have been
developed, depending on whether the final result is obtained in real time [29,30] or not. In the first
case, the reduction in the time needed for data processing is the most important factor in the approach
to research objectives (even at the expense of a metric accuracy reduction); in the second, however,
metric accuracy is the most important factor, although the temporal cost is higher [17,31,32].

There are many commercial mobile mapping systems for urban, architectural or archaeological
applications with high accuracy results [33]. Those systems are based on the integration on different
sensors such as (Inertial Measurement Unit) IMU, line scanners [28], cameras, Global Navigation
Satellite System (GNSS) [34], odometers and other sensors. The price and complexity of those systems
are normally high [35].

The classical applications require a known level of data accuracy and quality, however, the emerging
needs of Industry 4.0, building information modeling (BIM) or digital transformation, next to the
appearance of new devices and information processing techniques pose new challenges and research
opportunities in this field. Each capture method has its advantages and drawbacks, offering a particular
level of quality in its results; in this sense, numerous investigations have linked these parameters,
allowing people to choose the most cost-effective approach [35]. This can be achieved by way of
evaluating the use of the laser scanner and the vision-based reconstruction among different solutions for
progress monitoring inspection in construction and concluding (among other characteristics) that both
of them are appropriate for spatial data capture. This could [36] include among 3D sensing technologies,
photo/video-grammetry, laser scanning and the range of images that make a detailed assessment
of the content (low, medium or high) into BIM working environments. It may also include [37]
comparing photo/video-grammetry capture techniques with laser scanning, considering aspects such
as accuracy, quality, time efficiency and cost needed for collecting data on site. The combination of
data capture methods has also been traditionally analyzed; thus, [38] presently, there is a combined
laser scanning/photogrammetry approach to optimize data collection, cutting around 75% of the time
required to scan the construction site.

A common aspect, taken into account in most of the research, is the point cloud accuracy
evaluation, that has been addressed in three different ways [39]: (a) By defining levels of quality
parameters defined in national standards and guidelines that come from countries like the United
States, Canada, the United Kingdom and Scandinavian countries that lead BIM implementation in the
world [40], such as the U.S. General Services Administration (GSA) BIM Guide for 3D Imaging [41]
that sets the quality requirements of point clouds in terms of their level of accuracy (LOA) and level
of detail (LOD); (b) by evaluating quality parameters of a point cloud, in terms of accuracy and
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completeness [37] or (c) following three quality criteria: Reference system accuracy, positional accuracy
and completeness [42].

Furthermore, in the specific environment of 3D indoor models, [43] we propose a method that
provides suitable criteria for the quantitative evaluation of geometric quality in terms of completeness,
correctness, and accuracy by defining parameters to optimize a scanning plan in order to minimize
data collection time while ensuring that the desired level of quality is satisfied, in some cases, with the
implementation of an analytical sensor model that uses a “divide and conquer” strategy based on
segmentation of the scene [44], or one that captures the relationships between parameters like data
collection parameters and data quality metrics [45]. In other cases, the influence of scan geometry is
considered in order to optimize measurement setups [46], or are compared to different known methods
for obtaining accurate 3D modeling applications, like in the work of [47], in the context of cultural
heritage documentation.

This paper extends on past surveys of classical photogrammetry solutions, adopting an extended
solution approach for outdoor environments based on the use of a simple and hand-held self-assembly
device for data capture, based on images, that consist on two cameras: One, which data will be used to
calculate in real time, the path followed by the device using a VSALM algorithm, while with other one;
a high-resolution video recorded and used to achieve the scene reconstruction using photogrammetric
techniques. Finally, after following simple data collection and fully automated processing, a 3D point
cloud with associated color is obtained.

To determine the effectiveness of the proposed system, we evaluate it in one study site performed
outdoors in the facades of the Roman Aqueduct of Miracles, in terms of the requirements laid down in
the GSA BIM Guide for 3D Imaging. In this experiment, we obtain 3D point clouds from different
data capture conditions, that vary according to the distance from the device and the monument;
the measurements acquired by a total station serve to compare the coordinates of fixed points in both
systems, and therefore, determining the LOA of each point cloud. The results obtained, with root
mean square errors (RMSEs) between eight and 33 mm, stress the feasibility of the proposed system for
urban design and historic documentation projects, in the context of allowable dimensional deviations
in BIM and CAD deliverables.

This paper is divided into four sections. Following the Introduction, the portable mobile mapping
system is described, including the proposed algorithm schema for the computations; therefore, a case
study in which the system is applied is described in Section 2. The results are presented in Section 3
and finally, the conclusions are presented in Section 4.

2. Materials and Methods

This study was conducted with a simple and self-assembly prototype specifically built for data
capture (Figure 1), that consists of two cameras from the Imaging Source Europe GmbH company
(Bremen, Germany): Camera A (model DFK 42AUC03) and camera B (model DFK 33UX264) were
fixed to a platform with the condition of its optical axes being parallel; each camera incorporated a
lens; for camera A, the model was TIS-TBL 2.1 C, from the Imaging Source Europe GmbH company
and for camera B, the model was the Fujinon HF6XA–5M, from FUJIFILM Corporation (Tokyo, Japan).
The technical characteristics of cameras and lenses appear in Tables 1 and 2, respectively. Both cameras
were connected to a laptop (with an Intel core i7 7700 HQ CPU processor and RAM of 16 Gb, running
under Windows 10 Home), via USB 2.0 (camera A) and 3.0 (camera B). This beta version of the prototype
had an estimated base price under €2500.
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Figure 1. (a) 3D printing process of the prototype case; (b) cameras A and B with their placement 
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Figure 1. (a) 3D printing process of the prototype case; (b) cameras A and B with their placement inside
the case; and (c) the final portable mobile mapping system prototype.

Table 1. Main technical characteristics of cameras used in the prototype (from the Imaging Source
Europe GmbH company).

Model Resolution
(Pixels) Megapixels Pixel Size

(µm)
Frame

Rate (fps) Sensor Sensor
Size A/D (bit)

DFK
42AUC03 1280 × 960 1.2 3.75 25 Aptina MT9M021 C 1/3”CMOS 8

DFK
33UX264 2448 × 2048 5 3.45 ”8 Sony IMX264 2/3”

CMOS 8/12
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Table 2. Main technical data of lenses used in the prototype (from the Imaging Source Europe GmbH
company and FUJIFILM Corporation).

Model Focal Length (mm) Iris Range Angle of view (H × V)

TIS-TBL 2.1 C 2.1 2 97◦ × 81.2◦

Fujinon HF6XA–5M 6 1.9–16 74.7◦ × 58.1◦

The calibration process of the cameras was carried out with a checkerboard target (60 cm × 60 cm)
using a complete single camera calibration method [48], that provided the main internal calibration
parameters: The focal length, radial and tangential distortions, optical center coordinates and camera
axe skews. In addition, to know the parameters that related to the position of one camera compared
to the other, we designed the following, practical test: To use as ground control points we placed
15 targets on two perpendicular walls and measured the coordinates of each target with a TOPCON
Robotic total station, with an accuracy of 1” measuring angles (ISO 17123-3:2001) and 1.5 mm + 2 ppm
measuring distances (ISO 17123-4:2001). After running the observations with the prototype, we used a
seven-parameter transformation, using the 15 targets, to determine the relative position of one camera
in relation to the other [17].

Camera A and camera B had different configuration parameters which defined image properties
such as brightness, gain or exposure between others. In order to automate the capture procedure,
automatic parameters options had been chosen. In such a way, the data collection was automatic and
the user didn’t need to follow specials rules since the system accepted convergent or divergent turns
of the camera, stops or changes in speed. The algorithm processed all this data properly using the
proposed methodology.

During the capture (Figure 2), the user needed to see the VSLAM tracking in the screen of the
computer in real time. In this way, the user was sure he didn´t make a fast movement or if an item
appeared that interrupted camera visualization and, therefore, the tracking could not continue. In this
case, the user must return again to a known place and continue the tracking from this point.
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Workflow of the Proposed Algorithm for the Computation

The application of the VSLAM technique on a low weight device, normally with limited calculation
capabilities, needed the implementation of a low computational cost VSLAM algorithm to achieve
effective results. The technical literature provided a framework that consisted of the following basic
modules: The initialization module; to define a global coordinate system, and the tracking and mapping
modules; to continuously estimate camera poses. In addition, two additional modules were used for a
more reliable and accurate result: The re-localization module, that has to be used when, due to a fast
device motion or some disruptions in data capture, the camera pose must be computed again and the
global map optimization, which is performed to estimate and remove accumulative errors in the map,
produced during camera movements.

The characteristics of the VSLAM-photogrammetric algorithm, including identified strong and
weak points, depend on the methodology used for each module which sets its advantages and
limitations. In our case, we proposed the following sequential workflow (Figure 3) divided into four
threaded processes, which have been implemented in C++.
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Basically, the four processes consisted in the following: (I) A VSLAM algorithm to estimate both
motion and structure, that is applied in frames obtained from camera A, (II) an image selection and
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filtering process of frames obtained with camera B, (III) the application of an image segmentation
algorithm and finally, (IV) a classical photogrammetric process applied to obtain the 3D point cloud.
Each process is explained in more detail below.

The first process (I) started with the simultaneous acquisition of videos with cameras A and
B, with speeds of 25 FPS and 4 FPS, respectively. With the frames from camera A, used as an
ORB descriptor [49] for object recognition, detection and matching was used. This descriptor built
on the FAST key-point detector and the BRIEF descriptor, with good performance and low cost,
and therefore, was appropriate for our case. An ORB-SLAM algorithm was then applied to estimate
camera positioning and trajectory calculation [50]; this was an accurate monocular SLAM system that
worked in real time and can be applied in indoor/outdoor scenarios, and has modules to loop closure
detection, re-localization (to recover from situations where the system becomes lost) and to a totally
automatic initialization, taking into account the calibration parameters of the camera. From these
remarks, our process was carried out in three steps as follows [50]. The first step was the tracking,
which calculated the positioning of the camera for each frame and selected keyframes and decided
which frames were added to the list; the second one was local mapping, which performed keyframes
optimization, incorporating those that were being taken and removing the redundant keyframes.
With these data, through a local bundle adjustment, in addition to increasing the quality of the final
map, it was possible to reduce the computational complexity of the processes that were just running,
and equally for the subsequent steps. The third one was loop closing, which looked for redundant
areas where the camera had already passed before, which could be found in each new keyframe;
the transformation of similarity on the accumulated drift in the loop was calculated, the two ends of
the loop were aligned [50], the duplicate points were merged and the trajectory was recalculated and
optimized to achieve overall consistency. The result of this process was a text file with UNIX time
parameters and camera poses of the selected keyframes.

The above information together with the frames recorded by camera B, was used to start the
second process (II), in which a selection and filtering of the images obtained by camera B was carried
out, which consisted in the direct deletion of images whose baseline was very small, and therefore,
which made it difficult to compute an optimum relative orientation [17,51,52]. The filtering process
was performed in three consecutive steps: The first, a filtering based on keyframes coincidence,
which consisted of incorporating a β number of frames (in our case β = 2) from camera B between each
two consecutive frames from camera A and, at the same time, the remaining frames were removed.
To run this filter, it was necessary that the cameras were synchronized by UNIX time. The second
process, applied the so-called AntiStop filter, which removed those frames obtained in the event that
the camera had been in a static position, or with a very small movement, recorded images of the same
zone, which we described as redundant and which should, therefore, be eliminated. To determine the
redundant frames, it was assumed that cameras A and B were synchronized and that we knew the
coordinates of the projection center of each frame, computed in (I). We continued with the calculation of
the distances between the projection centers of every two consecutive keyframes i and j (Dij) as well as
the mean value of all the distances between consecutive frames (Dm) and the definition of the minimum
distance (Dmin) from which the device was either stopped or was in motion, by the expression:

Dmin = Dm * p,

where p is a parameter that depends on the data capture conditions (in our case, after performing
several tests, we defined a value of p = 0.7). Finally, the keyframes took by camera B in which the
distance between the projection centers of each two consecutive keyframes was less than the minimum
distance (Dij < Dmin) were removed.

The third, called the divergent self-rotation filter, was able to remove those keyframes captured
by camera B when they met two conditions: The rotation angles of the camera ωi (X axis) and κi
(Z axis) (Figure 4) increase or decrease their value permanently during data capture for of at least three
consecutive frames at a value of ±9◦ (in our case), and besides, their projection centers were very close
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to each other; for the calculation of the same procedure is the same one used as the one used for the
AntiStop filter, but with a different value of p (in our case, we considered a value of p = 0.9).
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The next process (III) was segmentation, which aimed to obtain more significant and easy to analyze
images in the subsequent photogrammetric process. It started searching for the homologous points
belonging to the keyframes resulting from the filtering process carried out in (II) [53–55], which was
performed between an image, the earlier one and the later one. The resulting images were stored in
a set, called a “segment”. The result of this process generated one or more independent segments
among themselves, which had a number of homologous points and an appropriate distribution to
be properly oriented (in our case, 200 points and 10% of these points were in each quadrant of the
image; in addition, if the segment did not have at least three images, it was discarded and its images
were removed).

The last process (IV) was called the photogrammetric process, which was structured in three steps:
The first was to compute a relative image orientation [53] setting the first image as the origin of the
relative reference system and used the homologous points of each segment and algorithms leading
to direct solutions [17,51,53]; then, a bundle adjustment) was used on the oriented images to avoid
divergences [56], obtaining the coordinates of the camera poses and computed tie points. The second
step consisted of an adjustment of the camera poses in each segment to adapt them to the overall
trajectory, computed in (I). This procedure was performed using minimum square techniques [57] in
each segment, and a three-dimensional transformation [10] to correct the positions of camera B with
respect to camera A.

In the third step, the scene was reconstructed using MICMAC software [54], in order to obtain
dense cloud points with color. MICMAC is a free open-source photogrammetry software developed
by the French National Mapping Agency (IGN) and the National School of Geographic Sciences
(ENSG) [58]. This software generates a depth map from the main image and a series of secondary
images to obtain parallax values. The calculation was carried out having taken into account that the
scene could be described by a single function Z = f (X; Y) (with X; Y; Z using Euclidean coordinates)
with several parameters of MICMAC to calculate the density correlation and obtain the cloud of dense
points with color [54,55,59] which was the final result of the process.
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3. Accuracy Assessment and Results

This work determined the accuracy of a set of point clouds obtained with the prototype in order
to validate the device for BIM work environments. Additionally, the results were compared with a
usual photogrammetric procedure, using a reflex camera and photogrammetric software (Agisoft
Metashape [60]), in order to compare the advantages and disadvantages of the proposed prototype
in respect to this known methodology. For this, an experimental test was carried out in the Roman
aqueduct of “The Miracles” in the city of Mérida (Spain). This monument, built in the first-century
A.C, has a total dimension of 12 km in length between underground and aerial sections with arches.
The test was carried out on an archery stretch which was 23 m high and 60 m wide, performing a set of
three data capture scenarios at different observation distances (5, 12, and 20 m) from the prototype to
the base of the monument (Figure 5).
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Figure 5. (a) Scheme with the data capture trajectories and (b) the areas covered by a frame, for 5, 12 and
20 m of distance prototype-monument. The figure that appears in (b), is a 3D model (mesh) generated
by the software Meshlab [61] from the 20m points cloud made only for visualization purposes.

In this test, the data collection was carried out in such a way that the movement of the user
followed a perpendicular direction to the camera optical axe (Figure 2), avoiding divergent turns since
this kind of movement was not necessary in this case. In this way, this prevented the algorithm from
using the divergent self-rotation filter in an unnecessary situation.

In order to evaluate the metric quality of the measures obtained with the prototype and the
Agisoft Metashape photogrammetric procedure, a control network was performed to be used in the
dimensional control study, following the procedures carried out by [62] and [63]. The network was
used as reference points and consisted on a set of targets and natural targets whose three-dimensional
coordinates in a local coordinate system were obtained by a second measuring instrument (more
precise than the device we want to evaluate). In this case, a total station Pentax V-227N (Pentax Ricoh
Imaging Company, Ltd, Tokyo, Japan) was used, with an accuracy of 7′ for angular measurements
(ISO 17123-3:2001) and 3 mm ± 2 ppm for distance measurements (ISO 17123-3:2001) with which a
total of 40 uniformly distributed targets have been measured (Figure 6).

Then, the method proposed by [62] was used, in which the accuracy of the 3D point cloud was
quantified according to the Euclidean average distance error (δavg) as:

δavg =
1
n

n∑
i=1

|Rai − T − bi| (1)
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where ai is the ith checkpoint measured by the prototype, bi is the corresponding reference point acquired
by the total station, R and T are the rotation and translation parameters for 3D Helmert transformation.

And the quality of the 3D point cloud was also evaluated by the root mean square error (RMSE) as:

RMSE =

√√
1
n

n∑
i=1

(
at

i − bi
)2

(2)

where at
i indicates the ai point after the 3D conformal transformation to bring the model coordinates in

the same system of the reference points.
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As mentioned previously in Section 1 of this paper, the point cloud accuracy evaluation can be
done according to different criteria. In our case, we have used the GSA BIM Guide for 3D Imaging
criteria, that defines four levels of detail (LOD) with dimensions of the smallest recognizable feature
ranging between 13 mm × 13 mm to 152 mm × 152 mm; and also defines the level of accuracy (LOA)
associated to each LOD, ranging between three and 51 mm of tolerance, considering it as the allowable
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dimensional deviation in the deliverable from truth (that has been obtained by some more precise
other means). In the case of a point cloud, the guide specifies that the distance between two points
from the model must be compared to the true distance between the same two points, and be less than
or equal to the specified tolerance; the guide also defines the area of interest as a hierarchical system
of scale in which each scan is registered, depending on the LOD. In Table 3, we summarize the data
quality parameters defined by the GSA for registering point clouds.

Table 3. Data quality parameters defined by U.S. General Services Administration (GSA) for registering
point clouds. (Unit: Millimeters).

Level of Detail
(LOD)

Level of Accuracy
(LOA, Tolerance) Resolution Areas of Interest (Coordinate Frame, c. f.)

Level 1 ±51 152 × 152 Total Project area (Local or State c. f.)
Level 2 ±13 25 × 25 e.g., building (local or project c. f.)
Level 3 ±6 13 × 13 e.g., floor level (project or instrument c. f.)
Level 4 ±3 13 × 13 e.g., room or artifact (instrument c. f.)

In order to complete the study, other photogrammetric system was analyzed under conditions
similar to the prototype (Figure 7). The camera used was a Canon EOS 1300D and the lens was an
EFS 18–55 mm, but we only used the focal length of 18mm for this experiment. Multiple images were
taken in this experiment for each distance (35 images for 5 m, 41 images for 12 m and 43 images for
20 m) and the camera was configured with a resolution of 2592 pixels × 1728 pixels with the aim of
comparing the results in an equitable way with the proposed approach which have a similar image
resolution. The reflex camera´s parameters (shutter, diaphragm, ISO, etc.) were chosen in automatic
mode during the test to match the conditions to the prototype test. The pictures were taken standing
on the same trajectories previously followed by the prototype, at the same distances from the aqueduct:
5, 12 and 20 m. These circumstances increase the time consumed in the field during the data capture,
as can be seen in the Table 4, because the user must focus each image and ensure that the picture
has been taken with enough overlap and quality. On the other hand, the prototype cameras also
have a configuration with automatic parameters which allowed the user, along with the methodology
used, to make a continuous capture, without stopping to take the images. The images of the Canon
camera were processed using the software Agisoft Metashape 1.5.4 [60] which is commercialized by
the company Agisoft LLC, sited in St. Petersburg, Russia (Figure 8).

Point cloud density for each system was measured. Two points clouds, one for each system,
were processed using the same 10 images of the aqueduct at a distance of 5 m. The density [37] of the
point cloud was 328 points/dm2 for the proposed prototype system and 332 points/dm2 for the Agisoft
Metashape photogrammetric software.

Table 4. Comparison between the proposed approach and the camera with Agisoft Metashape software
in regards to the time spent in the field for data capture and processing time using the same laptop (Intel
core i7 7700 HQ CPU processor, 16Gb RAM, Operative System Windows 10 Home). Distance values
are measured from the camera to the monument.

System Data Capture Distance (m) Data Capture Time (min) Processing Time (min)

Prototype and Visual Slam
(VSLAM)-Photogrammetric Algorithm

5 4.25 80
12 4.53 85
20 4.65 99

Canon Camera and Agisoft
Metashape Software

5 7.83 72
12 9.08 80
20 9.50 89

With the prototype and VSLAM-Photogrammetric algorithm we have computed the average error
and the RMSE in each direction (x, y, and z) of each data capture distance, that are listed in Table 5,
with overall accuracies of 12, 26 and 46 mm for 5, 12 and 20 m respectively and the RMSEs on each
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axis ranging between 5 to 8 mm (5 m), 10 to 21 mm (12 m) and 30 to 38 mm (20 m) (Figure 7) which
satisfied the error tolerance of ‘level 1’ (51 mm) for data capture distances from 12–20 m and ‘level 2’
(13 mm) for data capture distances about 5 m.

Table 5. This table compares the accuracy assessment results with the root mean square errors (RMSEs)
and average errors for data capture distances from 5 to 20 m from the camera to the monument,
between the prototype and VSLAM-photogrammetric algorithm and the Canon camera with Agisoft
Metashape software. The RMSE error values have been computed in the three vector components: X, Y
and Z.

Methodology

Prototype and VSLAM-Photogrammetric Algorithm Canon Camera and Agisoft Metashape Software

Distance 5 m

Error Vector
X (mm)

Error Vector
Y (mm)

Error Vector
Z (mm) Error (mm) Error Vector

X (mm)
Error Vector

Y (mm)
Error Vector

Z (mm) Error (mm)

Average
Error 12 11

RMSE 5 8 8 8 4 9 8 12

Distance 12 m

AVERAGE
Error 26 23

RMSE 21 16 10 16 12 18 17 28

Distance 20 m

Average
Error 46 35

RMSE 32 30 38 33 18 24 24 39
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Figure 7. Graphic on the evolution of the average errors and RMSEs for the distances of 5, 12 and
20 m from the camera to the monument. The results are shown for both systems: Prototype and
VSLAM-photogrammetric algorithm and Canon camera with Agisoft Metashape software.
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with Agisoft Metashape software.

The point clouds obtained at the different distances of observation shown in Figure 9. Small holes
or missing parts can be seen in those points clouds. This occurs due to the camera’s trajectory, since it
needs to focus directly on all the desired areas and capture a minimum number of images to perform
optimal triangulation. No filter has been applied in the results shown in Figure 9.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 17 

Figure 7. Graphic on the evolution of the average errors and RMSEs for the distances of 5, 12 and 20m 
from the camera to the monument. The results are shown for both systems: Prototype and VSLAM-
photogrammetric algorithm and Canon camera with Agisoft Metashape software. 

 
(a) (b) 

Figure 8. Comparison between points clouds resulting from both systems (with a data capture 
distance of 12 m): (a) Prototype and VSLAM-photogrammetric algorithm; and (b) Canon camera EOS 
1300D with Agisoft Metashape software. 

The point clouds obtained at the different distances of observation shown in Figure 9. Small 
holes or missing parts can be seen in those points clouds. This occurs due to the camera’s trajectory, 
since it needs to focus directly on all the desired areas and capture a minimum number of images to 
perform optimal triangulation. No filter has been applied in the results shown in Figure 9. 

  
(a) (b) 

 
(c) 

Figure 9. Points clouds resulted at the distances established in the experimental test: (a) 5 m; (b) 12 m; 
and (c) 20 m. The images show the central part of the color points clouds that resulted from the test. 
The points clouds have not been filtered or edited. 

Figure 9. Points clouds resulted at the distances established in the experimental test: (a) 5 m; (b) 12 m;
and (c) 20 m. The images show the central part of the color points clouds that resulted from the test.
The points clouds have not been filtered or edited.

4. Conclusions

The major innovations of this study are as follows: First, the proposed approach for the 3D data
capture and the implementation of the VSLAM-photogrammetric algorithm has been materialized in
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a functional and low-cost prototype, which has been checked in an experimental test, the results of
which have been presented in the context of the BIM work environment.

Second, the results obtained in the experimental test comply with the precision requirements of
the GSA BIM Guide for 3D Imaging for point cloud capture work with a resolution (minimum artifact
size) of 152 mm × 152 mm, for observation distances of approximately 20 m. For distances between 5
and 12 m, we saw that better accuracies and resolution results were achieved.

Third, the possibility of using the instrument at different distances facilitates the data capture
in shaded areas or areas with difficult access. This, together with the fact that the device has been
designed for outdoor data collection, makes it suitable for urban design and historic documentation,
which are usually carried out in outdoor environments, registering information for plans, sections,
elevations and details and 3D point cloud in PLY format (positioning: x, y, z and color: R, G, B),
following the GSA PBS(Public Building Service) CAD standards (2012) and the GSA BIM Guide for 3D
Imaging Standards.

In order to increase the knowledge of the proposed approach, it has been compared with a
well-known photogrammetric methodology consisting of a Reflex Canon 1300D camera and the
software Agisoft Metashape. The results of the comparison test have provided interesting conclusions:

1. The accuracy results of both methods are similar as can be seen in Table 5. Although the average
error is slightly higher in the proposed approach, the RMSE is a bit lower than with the Agisoft
Metashape methodology. This indicates a small, but greater dispersion of the points of the
proposed approach in respect to the Agisoft software. But as can be seen in the results, this factor
does not imply an increase of RMSE, but this error is slightly less in the proposed approach in
relation to Agisoft software.

2. The processing time was a bit higher in the proposed approach for the distances of 5 and 12 m
but not for 20 m, for which the time was slightly less. The differences are not significant, in our
opinion, and indicate that the proposed method optimizes the number of images extracted and
the photogrammetric process, thus equating well-known procedures such as the use of a Reflex
camera and the Agisoft Metashape software.

3. In our opinion, the greatest improvement occurred in the data capture field. The user does not
worry about how to use the camera or where to take the picture, because in the proposed approach,
the capture is continuous and the system chooses the images automatically, as is explained in
Section 2. In this way, the learning curve changes significantly, provided the user doesn´t need to
have previous knowledge about photography or photogrammetry. For this reason, the proposed
approach here described, reduces significantly the time spent in the field, as can be seen in Table 4.

A new handheld mobile mapping system based on images have been presented in this paper.
This proposed methodology does not adversely affect the known photogrammetric process (accuracy,
processing time, point cloud density) but it proposes a new, easier and faster way to capture the
data in the field, based on continuous data capture and fully automatic processing, without human
intervention in any phase.
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