Iterative Blind Deconvolution Algorithm for Deblurring a Single PSP/TSP Image of Rotating Surfaces
"> Figure 1
<p>Schematic of basic pressure-sensitive paint (PSP) (adapted from Gregory et al. [<a href="#B3-sensors-18-03075" class="html-bibr">3</a>]).</p> "> Figure 2
<p>Single-shot lifetime PSP method (adapted from Juliano et al. [<a href="#B7-sensors-18-03075" class="html-bibr">7</a>]).</p> "> Figure 3
<p>Measured lifetime decay curves (<b>a</b>) and corresponding lifetime calibration values (<b>b</b>) for polymer-ceramic (PC)-PSP with PtTFPP (adapted from Gregory et al. [<a href="#B8-sensors-18-03075" class="html-bibr">8</a>]).</p> "> Figure 4
<p>Normalized point spread function (PSF) at atmospheric pressure with a rotational frequency <span class="html-italic">f</span> = 269 Hz and length of 10 lifetimes (adapted from Gregory et al. [<a href="#B8-sensors-18-03075" class="html-bibr">8</a>]).</p> "> Figure 5
<p>(<b>a</b>) Sharp Gate 1 image (3000 × 4000), (<b>b</b>) Sharp Gate 2 image (3000 × 4000), and (<b>c</b>) Blurred Gate 2 image for the rotating disk at 269 Hz downscaled (600 × 800) and with 4% noise added. Colors represent the intensity captured by the Gate 2 image. Rotation is counterclockwise; images are in Cartesian coordinates.</p> "> Figure 6
<p>Blurred image of nitrogen jet grazing on rotating disk. Rotation is clockwise; image is in Cartesian coordinates. Colors represent intensity captured by Gate 2 of the 14-bit camera (adapted from Gregory et al. [<a href="#B8-sensors-18-03075" class="html-bibr">8</a>]).</p> "> Figure 7
<p>(<b>a</b>) Sharp image that is to be recovered in polar coordinates, and (<b>b</b>) blurred Gate 2 image (as in <a href="#sensors-18-03075-f005" class="html-fig">Figure 5</a>c) in polar coordinates. Colors represent the intensity captured in the Gate 2 image. The image x-axis is pixels in the <span class="html-italic">r</span>-direction, and the y-axis is pixels in the <span class="html-italic">θ</span>-direction. Rotation is downward; images are in polar coordinates.</p> "> Figure 8
<p>(<b>a</b>) Sharp image to be recovered, (<b>b</b>) result obtained using assumed <span class="html-italic">P</span> deconvolution without regularization, (<b>c</b>) polar restored image after nine iterations with five iterations of steepest descent, and (<b>d</b>) polar restored image after nine iterations with 15 iterations of steepest descent. Colors represent intensity. Dashed black line represents <span class="html-italic">r/R</span> = 0.95 used to plot profiles in <a href="#sensors-18-03075-f009" class="html-fig">Figure 9</a> and <a href="#sensors-18-03075-f010" class="html-fig">Figure 10</a>. Axes are the same as in <a href="#sensors-18-03075-f007" class="html-fig">Figure 7</a>. Rotation is downward; images are in polar coordinates.</p> "> Figure 9
<p>Effect of regularization iterations on restoration after nine iterations at <span class="html-italic">r</span> = 0.95. The x-axis represents pixels along the chord in polar coordinates. Rotation is toward increasing pixel values.</p> "> Figure 10
<p>Comparison at the interface of 90 kPa and 70 kPa at <span class="html-italic">r</span>/<span class="html-italic">R</span>=0.95 at the (<b>a</b>) leading edge and (<b>b</b>) trailing edge. Rotation is toward increasing pixel values.</p> "> Figure 11
<p>Sharp shock profile on a simulated propeller blade (to be recovered). Colors represent the intensity captured in the Gate 2 image, and axes represent pixels of the image in Cartesian coordinates.</p> "> Figure 12
<p>(<b>a</b>) Sharp intensity to be recovered, (<b>b</b>) blurred Gate 2 image obtained for blade rotation frequency of 269 Hz, (<b>c</b>) deblurred result as obtained from an invariant deblur with an assumed pressure of one atmosphere, and (<b>d</b>) recovered image after 13 iterations. Colors represent intensity. The dashed black line identifies the location (<span class="html-italic">r/R</span> = 0.95) used to plot profiles in <a href="#sensors-18-03075-f013" class="html-fig">Figure 13</a> and <a href="#sensors-18-03075-f014" class="html-fig">Figure 14</a>. Axes are the same as in <a href="#sensors-18-03075-f011" class="html-fig">Figure 11</a>. Rotation is counterclockwise; images are in Cartesian coordinates.</p> "> Figure 13
<p>Comparison of applied and restored intensity values at <span class="html-italic">r</span>/<span class="html-italic">R</span> = 0.95. The iterative deblurring result is after 13 iterations. Rotation is toward increasing pixel values.</p> "> Figure 14
<p>Restored intensity values after different iterations at <span class="html-italic">r</span>/<span class="html-italic">R</span> = 0.95. Rotation is toward increasing pixel values.</p> "> Figure 15
<p>Comparison of (<b>a</b>) invariant and (<b>b</b>) iterative restorations for the rotating disk. The dashed black line represents the location that was used to plot the profile in <a href="#sensors-18-03075-f016" class="html-fig">Figure 16</a>. Color represents the intensity captured in the Gate 2 image. Rotation is counterclockwise; images are in Cartesian coordinates.</p> "> Figure 16
<p>Intensity values for pixels on a section passing through the jet perpendicular to the sense of rotation. Rotation is toward decreasing pixel values.</p> ">
Abstract
:1. Introduction
2. Image Deblurring and Need for Current Work
3. Approach to Iterative Deblurring
3.1. Single-Shot Method and PSP Characteristics
3.2. Spatially Varying Kernel
3.3. Iterative Scheme
4. Methodology for Assessment of the Deblurring Technique
4.1. Forward Model
4.2. Experimental Image
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, T.; Sullivan, J.P. Pressure and Temperature Sensitive Paints; Springer: New York, NY, USA, 2005. [Google Scholar]
- Bell, J.H.; Schairer, E.T.; Hand, L.A.; Mehta, R.D. Surface Pressure Measurements Using Luminescent Coatings. Annu. Rev. Fluid Mech. 2001, 18, 155–206. [Google Scholar] [CrossRef]
- Gregory, J.W.; Sakaue, H.; Liu, T.; Sullivan, J.P. Fast Pressure-Sensitive Paint for Flow and Acoustic Diagnostics. Annu. Rev. Fluid Mech. 2014, 46, 303–330. [Google Scholar] [CrossRef]
- Watkins, A.N.; Leighty, B.D.; Lipford, W.E.; Goodman, K.Z.; Crafton, J.; Gregory, J.W. Measuring Surface Pressures on Rotor Blades Using Pressure-Sensitive Paint. AIAA J. 2016, 54, 206–215. [Google Scholar] [CrossRef]
- Wong, O.D.; Watkins, A.N.; Goodman, K.Z.; Crafton, J.; Forlines, A.; Gross, L.; Gregory, J.W.; Juliano, J.T. Blade Tip Pressure Measurements Using Pressure-Sensitive Paint. J. Am. Helicopter Soc. 2018, 63, 1–11. [Google Scholar] [CrossRef]
- Raffel, M.; Heineck, J.T. Mirror-based image derotation for aerodynamic rotor measurements. AIAA J. 2014, 52, 1337–1341. [Google Scholar] [CrossRef]
- Juliano, T.J.; Disotell, K.J.; Gregory, J.W.; Crafton, J.; Fonov, S. Motion-Deblurred, Fast-Response Pressure-Sensitive Paint on a Rotor in Forward Flight. Meas. Sci. Technol. 2012, 23, 045303. [Google Scholar] [CrossRef]
- Gregory, J.W.; Disotell, K.J.; Peng, D.; Juliano, T.J.; Crafton, J.; Komerath, N.M. Inverse methods for deblurring pressure-sensitive paint images of rotating surfaces. AIAA J. 2014, 52, 2045–2061. [Google Scholar] [CrossRef]
- Pandey, A.; Gregory, J.W. Frequency Response Characteristics of Polymer/Ceramic Pressure-Sensitive Paint. AIAA J. 2016, 54, 174–185. [Google Scholar] [CrossRef]
- Pandey, A.; Gregory, J.W. Step Response Characteristics of Polymer/Ceramic Pressure-Sensitive Paint. Sensors 2015, 15, 22304–22324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disotell, K.J.; Peng, D.; Juliano, T.J.; Gregory, J.W.; Crafton, J.W.; Komerath, N.M. Single-shot temperature- and pressure-sensitive paint measurements on an unsteady helicopter blad. Exp. Fluids 2014, 55, 1671. [Google Scholar] [CrossRef]
- Peng, D.; Jiao, L.; Yu, Y.; Liu, Y.; Oshio, T.; Kawakubo, T.; Yakushiji, A. Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades. Exp. Fluids 2017, 58, 127. [Google Scholar] [CrossRef]
- Gregory, J.W. Porous Pressure-Sensitive Paint for Measurement of Unsteady Pressures in Turbomachinery. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. [Google Scholar] [CrossRef]
- Geisler, R. A fast multiple shutter for luminescence lifetime imaging. Meas. Sci. Technol. 2017, 28, 095403. [Google Scholar] [CrossRef]
- Weiss, A.; Geisler, R.; Schwermer, T.; Yorita, D.; Henne, U.; Klein, C.; Raffel, M. Single-shot pressure-sensitive paint lifetime measurements on fast rotating blades using an optimized double-shutter technique. Exp. Fluids 2017, 58, 120. [Google Scholar] [CrossRef]
- Pandey, A.; Gregory, J.W.; Stanfield, S.; Crafton, J.W. Comparison of Blur Elimination Techniques for PSP Images of Rotating Surfaces. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Lang, W.; Gardner, A.D.; Mariappan, S.; Klein, C.; Raffel, M. Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation. Exp. Fluids 2015, 56, 1–14. [Google Scholar] [CrossRef]
- Raffel, M.; Merz, C.B.; Schwermer, T.; Richter, K. Differential infrared thermography for boundary layer transition detection on pitching rotor blade models. Exp. Fluids 2015, 56, 1–13. [Google Scholar] [CrossRef]
- Wing, G.M. A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding; SIAM: Philadelphia, PA, USA, 1991. [Google Scholar]
- Hansen, P.C. Discrete Inverse Problems: Insight and Algorithms; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Gatesmark Publishing: Knoxville, TN, USA, 2009. [Google Scholar]
- Hanke, M.; Nagy, J.; Plemmons, R. Preconditioned iterative regularization for ill-posed problems. In Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation, Kent, OH, USA, 13–14 March 1992; pp. 141–163. [Google Scholar]
- Hansen, P.C. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 1994, 6, 1–35. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 1982, 8, 43–71. [Google Scholar] [CrossRef]
- Berisha, S.; Nagy, J.G. Iterative methods for image restoration. In Academic Press Library on Signal Processing; Academic Press: Waltham, MA, USA, 2014; Volume 4, pp. 193–247. [Google Scholar]
- Nagy, J.G.; Palmer, K.; Perrone, L. Iterative methods for image deblurring: A Matlab object-oriented approach. Numer. Algorithms 2004, 36, 73–93. [Google Scholar] [CrossRef]
- Lohmann, A.W.; Paris, D.P. Space-variant image formation. JOSA 1965, 55, 1007–1013. [Google Scholar] [CrossRef]
- Sawchuk, A.A. Space-variant image restoration by coordinate transformations. JOSA 1974, 64, 138–144. [Google Scholar] [CrossRef]
- Ribaric, S.; Milani, M.; Kalafatic, Z. Restoration of images blurred by circular motion. In Proceedings of the First International Workshop on Image and Signal Processing and Analysis, Pula, Croatia, 14–15 June 2000; pp. 53–60. [Google Scholar] [CrossRef]
- Trussell, H.; Hunt, B. Sectioned methods for image restoration. IEEE Trans. Acoust. Speech Signal Process. 1978, 26, 157–164. [Google Scholar] [CrossRef]
- Nagy, J.G.; O’Leary, D.P. Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 1998, 19, 1063–1082. [Google Scholar] [CrossRef]
- Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S.T.; Freeman, W.T. Removing camera shake from a single photograph. ACM Trans. Graph. 2006, 25, 787–794. [Google Scholar] [CrossRef]
- Shan, Q.; Jia, J.; Agarwala, A. High-quality motion deblurring from a single image. ACM Trans. Graph. 2008, 27, 73. [Google Scholar] [CrossRef]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2354–2367. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.; Sra, S.; Scholkopf, B.; Harmeling, S. Efficient filter flow for space-variant multiframe blind deconvolution. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 607–614. [Google Scholar] [CrossRef]
- Cho, S.; Matsushita, Y.; Lee, S. Removing non-uniform motion blur from images. In Proceedings of the 11th IEEE International Conference on Computer Vision(ICCV), Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Joshi, N.; Kang, S.B.; Zitnick, C.L.; Szeliski, R. Image deblurring using inertial measurement sensors. ACM Trans. Graph. 2010, 29, 4. [Google Scholar] [CrossRef]
- Joshi, N.; Szeliski, R.; Kriegman, D.J. PSF estimation using sharp edge prediction. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2008), Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Harmeling, S.; Michael, H.; Schölkopf, B. Space-variant single-image blind deconvolution for removing camera shake. In Proceedings of the 2010 Advances in Neural Information Processing Systems 23 (NIPS 2010), Hyatt Regency, Vancouver, Canada, 6–11 December 2010; pp. 829–837. [Google Scholar]
- Shan, Q.; Xiong, W.; Jia, J. Rotational motion deblurring of a rigid object from a single image. In Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV-2007), Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Sroubek, F.; Milanfar, P. Robust multichannel blind deconvolution via fast alternating minimization. IEEE Trans. Image Process. 2012, 21, 1687–1700. [Google Scholar] [CrossRef] [PubMed]
- Tigkos, K. Omni-Directional Image Deblurring. Master’s. Thesis, Technical University of Denmark (DTU), Lyngby, Denmark, 2011. [Google Scholar]
- Hansen, P.C.; Nagy, J.G.; O’leary, D.P. Deblurring Images: Matrices, Spectra, and Filtering; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar] [CrossRef]
- Strang, G. Computational Science and Engineering; Wellesley-Cambridge Press: Wellesley, MA, USA, 2007. [Google Scholar]
- Nagy, J.G.; Palmer, K.M. Steepest descent, CG, and iterative regularization of ill-posed problems. BIT Numer. Math. 2003, 43, 1003–1017. [Google Scholar] [CrossRef]
- Whyte, O.; Sivic, J.; Zisserman, A.; Ponce, J. Non-uniform deblurring for shaken images. Int. J. Comput. Vis. 2012, 98, 168–186. [Google Scholar] [CrossRef]
- Fang, S.; Disotell, K.J.; Long, S.R.; Gregory, J.W.; Semmelmayer, F.C.; Guyton, R.W. Application of fast-responding pressure-sensitive paint to a hemispherical dome in unsteady transonic flow. Exp. Fluids 2011, 50, 1495–1505. [Google Scholar] [CrossRef]
- Chan, T.F.; Shen, J. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods; SIAM: Philadelphia, PA, USA, 2005. [Google Scholar]
- Dahl, J.; Hansen, P.C.; Jensen, S.H.; Jensen, T.L. Algorithms and software for total variation image reconstruction via first order methods. Numer. Algorithms 2010, 53, 67–92. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, A.; Gregory, J.W. Iterative Blind Deconvolution Algorithm for Deblurring a Single PSP/TSP Image of Rotating Surfaces. Sensors 2018, 18, 3075. https://doi.org/10.3390/s18093075
Pandey A, Gregory JW. Iterative Blind Deconvolution Algorithm for Deblurring a Single PSP/TSP Image of Rotating Surfaces. Sensors. 2018; 18(9):3075. https://doi.org/10.3390/s18093075
Chicago/Turabian StylePandey, Anshuman, and James W. Gregory. 2018. "Iterative Blind Deconvolution Algorithm for Deblurring a Single PSP/TSP Image of Rotating Surfaces" Sensors 18, no. 9: 3075. https://doi.org/10.3390/s18093075
APA StylePandey, A., & Gregory, J. W. (2018). Iterative Blind Deconvolution Algorithm for Deblurring a Single PSP/TSP Image of Rotating Surfaces. Sensors, 18(9), 3075. https://doi.org/10.3390/s18093075