
sensors

Article

Feature Selection Method Based on High-Resolution
Remote Sensing Images and the Effect of Sensitive
Features on Classification Accuracy

Yi Zhou 1, Rui Zhang 1,2, Shixin Wang 1,* and Futao Wang 1,*
1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;

zhouyi@radi.ac.cn (Y.Z.); zhangrui@radi.ac.cn (R.Z.)
2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: Wangsx@radi.ac.cn (S.W.); wangft@radi.ac.cn (F.W.)

Received: 26 May 2018; Accepted: 20 June 2018; Published: 22 June 2018
����������
�������

Abstract: With the advent of high spatial resolution remote sensing imagery, numerous image
features can be utilized. Applying a reasonable feature selection approach is critical to effectively
reduce feature redundancy and improve the efficiency and accuracy of classification. This paper
proposes a novel feature selection approach, in which ReliefF, genetic algorithm, and support
vector machine (RFGASVM) are integrated to extract buildings. We adopt the ReliefF algorithm to
preliminary filter high-dimensional features in the feature database. After eliminating the sorted
features, the feature subset and the C and γ parameters of support vector machine (SVM) are encoded
into the chromosome of the genetic algorithm. A fitness function is constructed considering the sample
identification accuracy, the number of selected features, and the feature cost. The proposed method
was applied to high-resolution images obtained from different sensors, GF-2, BJ-2, and unmanned
aerial vehicles (UAV). The confusion matrix, precision, recall and F1-score were applied to assess the
accuracy. The results showed that the proposed method achieved feature reduction, and the overall
accuracy (OA) was more than 85%, with Kappa coefficient values of 0.80, 0.83 and 0.85, respectively.
The precision of each image was more than 85%. The time efficiency of the proposed method was
two-fold greater than SVM with all the features. The RFGASVM method has the advantages of large
feature reduction and high extraction performance and can be applied in feature selection.

Keywords: SVM; feature selection; genetic algorithm; object-based; accuracy evaluation

1. Introduction

High-resolution remote sensing images are widely used in different fields, such as in land cover
mapping and monitoring, classification analysis, road detection and automatic building extraction in
a complex environment [1]. Extraction methods can be categorized into three main groups, namely
visual interpretation, pixel and object-based methods. The main difference is the basic unit. The visual
interpretation method is inefficient and easily affected by human factors. Pixel-based approaches
use pixels as the basic analysis units, and object-based approaches split an image into homogeneous
regions (objects) of different sizes containing multiple pixels [2]. These methods cannot satisfy the
need for information extraction with an increase in image space resolution. The latter also considers
the spectral, geometric, texture and topological relationships of image objects which makes it possible
to utilize the contextual information.

Although the generation of hundreds of different features for each image object is an advantage
of object-based approaches, the large number of features results in two main problems at the same
time. On one hand, the computational burden of the procedure and the calculation of features become
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time-consuming. More importantly, the classification accuracy is degraded with limited samples.
Thus, optimizing the feature subset is important for classification and information extraction based on
high spatial resolution images [3]. Consequently, feature selection methods can be applied to tackle
these problems. Feature selection methods include filter, wrapper and embedded algorithms. Filter
algorithms remove features directly from the original feature set and independent of the learning
algorithm, which may be a classification algorithm or a clustering algorithm. Some studies of filters
methods have selected features by object-based extraction. The ReliefF (RF) is a typical feature selection
algorithm, which assigns higher weights to features associated with categories, removes irrelevant
features quickly and has a high operating efficiency when dealing with multiple classification problems.
However, the RF algorithm has difficulty removing redundant features of datasets. Wrapper and
embedded algorithms select features concurrently with the learning process and generally lead to
better results than filter methods, such as genetic algorithms, which measure the performance of
features with a classifier and improve the effect of the learning algorithm at the same time. Numerous
object-based models for selecting features have been developed in recent decades to study optimum
feature selection; these models include empirical analysis [4], separability and thresholds (SEaTH) [5],
minimal redundancy maximal relevance (mRMR) [6] and the genetic algorithm (GA) [7]. Most
studies have focused on one method, and only a few works have concentrated on coupling methods.
S Rajesh et al. [8] proposed a method based on GA for the selection of a subset from the combination of
wavelet packet statistical and Wavelet Packet Cooccurrence textural feature sets. Wang et al. [9]
adopted the ReliefF algorithm (RF) to eliminate redundant features. Thus, combined with the
advantages of previous methods, optimization of both the goodness-of-fit and the number of variables
is worth studying.

With the development of space and sensor technology, the amount of high-resolution remote
sensing data has increased dramatically [10], and features have been characterized by massiveness
and high dimensionality. Thus, extracting effective features of targets from feature sets is a key stage
in information extraction. Previous works have focused on single feature extraction methods and
pixel-based analyses. However, another problem in objected-based methods is that primitive features
are calculated for large areas. The efficiency and precision of information extraction are also challenges.
They do not take advantage of the different types of feature selection and object-based methods and
do not take into account the optimization of classifier parameters.

To solve the problem of high-dimensional feature redundancy and slow convergence in
objected-based information extraction, we proposed a feature extraction method integrating ReliefF,
the genetic algorithm and support vector machine, namely the RFGASVM method, which combines
the filter with the wrapper method. Our approach can be described in four steps: First, improved
multi-scale segmentation is utilized to construct blocks of homogenous regions. Second, the features
are ranked based on the weights and irrelevant features are removed; third, the preliminarily selected
feature subsets are encoded with support vector machine (SVM) parameters (C and γ) into the
chromosome and optimized based on the genetic algorithm (GA). Finally, the SVM classifier is
employed to test the proposed method and its sensitivity is compared with related methods.

2. Methodology

2.1. Data Sets

The described methodology was applied to high-resolution optical satellite images (1 m data for
GaoFen-2 and 0.5 m data for Beijing-2) and 0.2 m unmanned aerial vehicle (UAV) images (Figure 1).
The sizes of the sample images from the dataset were 900 × 500, 1000 × 1000 and 1500 × 1000,
respectively. The remote sensing images included two kinds of data: panchromatic and multispectral
(blue, green, red and near-infrared). For the optical remote sensing images, radiometric calibration,
Gram–Schmidt pan sharpening algorithm fusion and atmospheric correction were used to obtain high
spatial resolution multispectral images. For original aerial drone images, Pixel-Grid software was used
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to correct the difference in the original photo’s distortion and the image was rotated according to the
actual overlapping direction. A position and orientation system (POS) was used under the condition
of a no-control point through POS-assisted aerial triangulation after three-dimensional free network
adjustment to generate an original orthographic image (DOM) from the original single photo mosaic.
Although the urban remote sensing imagery used in this work was of high resolution, some object edges
were still fuzzy which resulted in the object being unrecognizable from the background. Therefore,
edge enhancement, an image Gaussian filtering method that reduces the effect of noise, was used.
This method can also decrease the complexity of image computation and remove system noise [10]. Edge
enhancement is widely used in fields such as pattern recognition and image semantic segmentation.
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Figure 1. Experimental data ((a) GF-2 satellite data, (b) BJ-2 satellite data, and (c) unmanned aerial
vehicle (UAV) data).

2.2. Related Theories

This research attempted to extract a building by employing object-based image analysis. The goal
of extraction is to obtain the highest accuracy of identification while using relatively few features.
In this work, we used the SVM classifier to extract building information. The two parameters, namely,
C and γ, considerably influenced the final classification accuracy. In feature selection based on the
previous GA, the number of features was barely considered and the optimization and improvement
of the input parameters of the classifier were not considered. This work combined the GA and SVM
classifiers using the RF feature weighting algorithm. When the fitness function in GA was set, three
factors were considered (classification accuracy, number of features and feature cost). This case is
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a typical multi-objective optimization problem. Multi-objective optimization enables multiple targets
to reach the optimal state at the same time under specific constraints.

2.2.1. Multiresolution Segmentation Methods Based on High-Resolution Remote Sensing Images

We defined typical land cover elements for a segmentation according to their characteristics.
An image is segmented into a cluster, called an object, and has shape information [11]. The created
image objects should represent real objects [12,13]. In the present study, an adaptive multiscale
segmentation model was used to create image objects and the optimization of the scale parameters.
For high-resolution remote sensing images, the fractal net evolution approach (FNEA) was a regional
growth algorithm from the bottom to the top. Based on the principle of least heterogeneity,
the neighboring pixels with similar spectral information were merged into a homogeneous image
object. All pixels that belonged to the same object after segmentation represented the same feature.
In image segmentation, the spatial, spectral and shape features of the image object simultaneously
operate to generate an object with spectral homogeneity and homogeneous spatial characteristics and
shape features.

The scale parameter of the FNEA segmentation algorithm was the region merger cost which
was a threshold of “heterogeneity change” when the objects were merged. The multiscale expression
of images was achieved to a certain extent; however, the result of previously set scaling parameters
were barely recorded before segmentation. This method obtained a limited number of multiscale
expressions. For issues such as unclear hierarchical relationships and scale conversion, an efficient
graph-based image segmentation model (EGSM) was proposed by Felzenszwalb in 2004 [14]. This work
adopted the optimal scale method, a novel bilevel scale-set model (BSM), which was proposed
by Hu [15] based on EGSM. The method combines the FNEA algorithm and the layered iterative
optimization of regional consolidation methods. The regional hierarchy structure was constructed,
and multiscale representation of house images was obtained (Figure 2). Using the BSM, global
evolutionary analysis and unsupervised scale set reduction were applied, and in processes where
hierarchical region consolidation was recorded completely, the hierarchical relationships were recorded
and each region was indexed on a scale. Scale reduction based on global evolution analysis was
performed according to the minimum risk Bayesian decision framework. The BSM can be used to
calculate the image segmentation results at any scale inversely, so as to solve the problem of adjusting
the scale parameters.
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2.2.2. Feature Extraction Structure

In the investigated images (obtained from satellite and UAV images), the variable features were
extracted using eCognition 9.1. Such features included spectral, geometry, texture, shadow, context
and geoscience auxiliary features of image objects. To test the performances of feature optimization
and selection, we collected a total of 113 features from high resolution remote-sensing images,
which included GF-2, BJ-2 satellite images, and 67 features from UAV images. A description of
the object features is shown in Tables 1 and 2. The UAV images only contained R, G and B bands;
as such, their spectral and shadow characteristics considerably differed from those of satellite images.

Table 1. Description of features extracted from high resolution remote-sensing images.

Feature Name Feature Description

Spectral features

Mean L (R, G, B, NIR); brightness; SD L (R, G, B, NIR); ratio L (R, G, B, NIR); max.diff; MBI
index (Huang Xin et al.); BAI:(B − NIR)/(B + NIR);
NDBI: (MIR − NIR)/(MIR + NIR); NDVI: (NIR − R)/(NIR + R); DVI: NIR − R; RVI:
NIR/R; SAVI: 1.5 × (NIR − R)/NIR + R + 0.5); OSAVI: (NIR − R)/(NIR + R + 0.16); SBI:
(R2 + NIR2)0.5;
NDWI:(G − NIR)/(G + NIR)

Geometrical features
Area; length; width; length/width; boundary length; pixel number; shape index; density;
main direction; asymmetry; compactness; rectangular fit; elliptic fit; differential of
morphological profiles (DMP)

Textural features
GLCM entropy; GLCM angular second moment; GLCM correlation; GLCM homogeneity;
GLCM contrast; GLCM mean; GLCM SD; GLCM dissimilarity; GLDV angular second
moment; GLDV entropy; GLDV contrast; GLDV mean

Shadow indexs
SI:(R + G + B + NIR)/4;
Index related to shadow: Chen1: 0.5 × (G + NIR)/R − 1; Chen2: (G − R)/(R + NIR);
Chen3: (G + NIR − 2R)/(G + NIR + 2R); Chen4: (R + B)/(G − 2); Chen5: |R + G − 2B|

Contextual features Object numbers; object layers; image resolution; mean of image layers

Geo-Auxiliary features Digital elevation model(DEM); slope; aspect; building vectors

(Remark: Mean L: mean of the bands; SD L: Standard Deviation of the bands; ratio L: ratio of the bands; MBI:
Morphological Building Index; BAI: Building Area Index; NDBI: Normalized Difference Build-up Index; NDVI:
Normalized Difference Vegetation Index; DVI: Difference Vegetation Index; RVI: Ratio Vegetation Index; SAVI:
Soil-Adjusted Vegetation Index; OSAVI: Optimized Soil Adjusted Vegetation Index; SBI: Soil brightness index;
NDWI: Normalized Difference Water Index; GLCM: Gray Level Co-occurrence Matrix; GLDV: Grey Level Difference
Vector; SI: Shadow Index; Chen: Custom features).
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Table 2. Description of features extracted from unmanned aerial vehicle image.

Feature Name Feature Description

Spectral features
Mean L (R, G, B, NIR); brightness; SD L (R, G, B, NIR); ratio L (R, G, B, NIR); max.diff;
Green Index: GR = G/(R + G + B); Red-Green Vegetation Index: NGRDI = (G − R)/(G + R);
GLI = (2G − R − B)/(2G + R + B)

Geometrical features
Area; length; width; length/width; boundary length; pixel number; shape index; density;
main direction; asymmetry; compactness; rectangular fit; elliptic fit; differential of
morphological profiles (DMP); digital surface model(nDSM); height standard deviation

Textural features
GLCM entropy; GLCM angular second moment; GLCM correlation; GLCM homogeneity;
GLCM contrast; GLCM mean; GLCM SD; GLCM dissimilarity; GLDV angular second
moment; GLDV entropy; GLDV contrast; GLDV mean

Shadow indexs Chen4: (R + B)/(G − 2); Chen5: |R + G − 2B|

Contextual features Object numbers; object layers; image resolution; mean of image layers

Geo-Auxiliary features Digital elevation model(DEM); slope; aspect; building vectors

(Remark: GR: Green Index; GLR: Green Leaf Index; NGRDI: Red-Green vegetation index).

2.2.3. Feature Selection Based on ReliefF Algorithm and Coupled GA-SVM Models

ReliefF algorithm: ReliefF (RF), an extension of the Relief method, is efficient in estimating the
quality of attributes but is limited to two-class problems only. This method can calculate distances
between sample distributions and reliably estimate probabilities and can handle incomplete and
multiclass data sets while the complexity remains the same [16,17]. When dealing with multiple types
of problems, such as regression problems, for continuous data, the RF algorithm does not uniformly
select the nearest neighbor sample from all different sample sets but selects the nearest neighbor
sample from each set of samples; the degree of the importance of a feature is evaluated by calculating
the ability to separate the nearest distance between any two classes. Given a sample set, S, sample
R is selected from S, and the K nearest neighbors of sample R are found. The closest same class
instance of sample R is called “near-hit (NH),” and the closest different-class instance of sample R is
called “near-miss (NM).” The weight of feature t is denoted as ωt, which is updated. To reduce the
randomness in feature evaluation, the entire process should be repeated m times to obtain the average
value, which is set as the final weight.

ωi
t = ωi−1

t +
∑c 6=class(x)

p(x)
1−p(class(x)) ∑k

j=1 di f f (x, M(x))

m× k
− ∑k

i=1 di f f (x, H(x))
m× k

,

where diff () indicates the distance of the sample on feature t; M(x) and H(x) represent the closest same
class sample and a different-class sample of sample x, respectively; p() represents the ratio of the entire
samples in class ci to all heterogeneous samples in S; m is the number of iterations; and k is the number
of nearest neighbors.

SVM model: The basic principles of SVM can be found in the studies of Cortes and Vapnik [18]
and Devroye et al. [19]. SVM provides the optimal hyperplane (Figure 1) to maximize the margin
between the closest positive and negative samples because of its effectivity in working with linearly
non-separable and high dimensional datasets [20]. The white and black points are samples of two
categories (Figure 3). H is the classification line, H1 and H2 represent the straight lines of the two
closest samples from H and the distance between them is the classification interval. The optimal
classification hyperplane makes the classification correct while maximizing the separation margin.



Sensors 2018, 18, 2013 7 of 16Sensors 2018, 18, x FOR PEER REVIEW  7 of 16 

 

Positive objects Negative objects

H1

H2

H

 

Figure 3. The optimal hyperplane. 

The original SVM algorithm seeks a linear decision surface (H) using f(x) = 𝑤𝑇𝑥 + 𝑏, where w 

is a dimensional coefficient vector and b is the offset. The linear SVM achieves an optimal 

hyperplane by solving the following optimization problem: 

min
1

2
‖𝑊‖2  

s. t. : 𝑌𝑖 ∙ (𝑊𝑇 ∙ 𝑋𝑖 + 𝑏) ≥ 1 𝑖 = 1,2,3, … 𝑁.  

The optimization of the optimal hyperplane can be converted into a Lagrangian dual problem: 

L(W, b, a) =
1

2
‖𝑊‖2 − ∑ 𝑎𝑖[(𝑊 ∙ 𝑋𝑖 + 𝑏) − 1]𝑁

𝑖=1 ,  

where 𝑎𝑖 ≥ 0 and is the Lagrangian multiplier. The final classification discriminant function can be 

expressed as 

f(𝑋) = ∑ 𝑎𝑖𝑌𝑗𝑋𝑖
T ∙ X𝑁

𝑖=1 + 𝑏.  

In most cases, SVM maps nonlinear training samples to the high-dimensional feature space and 

constructs linear discriminant functions. One of the most popular and frequently used kernel 

functions is the radial basis function (RBF), which has good generalization ability: 

f(𝑋) = ∑ 𝑎𝑖𝑌𝑗K(𝑋𝑖 ∙ X)𝑁
𝑖=1 + 𝑏.  

SVM uses a kernel function to map nonlinearly separable classes from a low-dimension to a 

higher dimension feature space. RBF is a useful function and has been implemented widely. It can 

map non-linear primitive features to high dimensions and deal with problems of non-linear 

separability. The linear kernel function is a special case of RBF. In addition, a large amount of 

polynomial kernel function parameters and the inner product need to be calculated. As a result, the 

model is complex, and there are calculation problems, such as overflow. A small number of RBF 

kernel function parameters are more convenient and efficient for model calculating. An RBF kernel 

needs two parameters (C and γ) which should be set to obtain an improved classification model. C 

is a preset value that penalizes the misclassification, and γ controls the width of the RBF kernel [21]. 

To obtain an optimal combination of C and γ, the present work used grid search and 10-fold  

cross-validation. Grid search is a process where various combinations of C and γ are selected 

within a predefined range at a certain interval. Cross-validation is used to test the accuracy of 

classification in terms of different combinations of C and γ. 

Figure 3. The optimal hyperplane.

The original SVM algorithm seeks a linear decision surface (H) using f(x) = wTx + b, where w is
a dimensional coefficient vector and b is the offset. The linear SVM achieves an optimal hyperplane by
solving the following optimization problem:

min
1
2
‖W ‖2

s.t. : Yi·
(

WT ·Xi + b
)
≥ 1 i = 1, 2, 3, . . . N.

The optimization of the optimal hyperplane can be converted into a Lagrangian dual problem:

L(W, b, a) =
1
2
‖W ‖2 −∑N

i=1 ai[(W·Xi + b)− 1],

where ai ≥ 0 and is the Lagrangian multiplier. The final classification discriminant function can be
expressed as

f(X) = ∑N
i=1 aiYjXi

T·X + b.

In most cases, SVM maps nonlinear training samples to the high-dimensional feature space and
constructs linear discriminant functions. One of the most popular and frequently used kernel functions
is the radial basis function (RBF), which has good generalization ability:

f(X) = ∑N
i=1 aiYjK(Xi·X) + b.

SVM uses a kernel function to map nonlinearly separable classes from a low-dimension to
a higher dimension feature space. RBF is a useful function and has been implemented widely.
It can map non-linear primitive features to high dimensions and deal with problems of non-linear
separability. The linear kernel function is a special case of RBF. In addition, a large amount of
polynomial kernel function parameters and the inner product need to be calculated. As a result,
the model is complex, and there are calculation problems, such as overflow. A small number of
RBF kernel function parameters are more convenient and efficient for model calculating. An RBF
kernel needs two parameters (C and γ) which should be set to obtain an improved classification
model. C is a preset value that penalizes the misclassification, and γ controls the width of the RBF
kernel [21]. To obtain an optimal combination of C and γ, the present work used grid search and 10-fold
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cross-validation. Grid search is a process where various combinations of C and γ are selected within
a predefined range at a certain interval. Cross-validation is used to test the accuracy of classification in
terms of different combinations of C and γ.

GA: This algorithm consists a series of genetic operations, such as selection and crossover,
which are mutations, to generate a new generation of groups which are gradually evolved to be
included or become close to the optimal solution [22]. In feature selection, first, the feature set to be
optimized and C and γ in the SVM classifier are encoded into a chromosome. A fitness function is
constructed considering the recognition accuracy of the house, and an initial population is generated.
The initial population is selected through selection and cross-mutation operations. Individuals in the
population are optimized to produce the optimal subset of features and the optimal C and γ.

The basic procedure for chromosome coding can be summarized as shown in Figure 4.
In chromosome design, the chromosome includes three parts: the feature set, C and γ. The detailed
design for the chromosome is shown in Figure 3, where g1

f to gn( f )
f is the encoding of feature set (f ),

n( f ) represents the bits of the code, in which n represents a sequence of numbers, 1 represents that the
feature is selected and 0 represents that the feature is ignored; g1

C to gn(C)
C encodes the SVM parameter

C, and g1
γ to gn(γ)

γ encodes the SVM parameter γ, while n(C) and n(γ) represent the bits of the code.
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Figure 4. The chromosome design. SVM: support vector machine.

Based on the feature weights calculated by RF, the initial population is provided for GA. In the
population initialization phase, the population size of GA is based on feature weights and the maximum
number of iterations must be set appropriately. The weights of the retained features are normalized,
and the result is set as the probability that the feature is selected. An individual’s fitness of the proposed
method is primarily determined by three evaluation criteria, namely the classification accuracy, the size
of the selected feature subset and the feature cost. However, the feature cost was ignored in previous
studies. Thus, small feature subsets include a low total feature cost and a high classification accuracy,
in which the optimal individual (single optimal feature) demonstrating good fitness is chosen during
the evolutionary process; an individual’s fitness can be obtained as follows:

fitness = Wa × accuracy + W f × (1− 1
n ∑n

i=1 fi × Ci),

where, Wa represents the weight of the classification accuracy, which is the classification results of the
test samples. W f represents the weight of the number of selected features with feature costs, and Ci
represents the cost of the features. If fi = 1, then the feature is selected as an input feature for the SVM
classifier; if fi = 0, then the feature is ignored. Algorithm 1 shows the flow of the proposed feature
selection method.
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Algorithm 1. Flow of the proposed feature selection method.

Input
S is an initial sample feature set and gn( f )

f , gn(C)
C , gn(γ)

γ are the initial population, where f encodes
the feature set,
C and γ are the encoded SVM parameters.
Output
Extracted features based on the RFGASVM method
Repeat

1. Sequence sample feature set using ReliefF and the weight of feature t (ωi
t) is updated m times to obtain

the average value
2. Population initialization with the RFGA method
3. Set the individual’s fitness. The feature cost is 1

n ∑n
i=1 fi × Ci, where Ci represents the cost of features and

fi = 1, 0

Until the termination test is met

4. A small feature subset with a low total feature cost and high classification accuracy

(Remark: RFGASVM: ReliefF, genetic algorithm, and support vector machine method; RFGA: integrate ReliefF with
genetic algorithm method).

The algorithm mentioned above is shown in Figure 5.
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2.3. Accuracy Assessment

The accuracy assessment was conducted using a confusion matrix from the perspective
of classification, and the performance of the SVM classifier was evaluated by precision, recall,
and F1-score based on recognition rate. We evaluated the accuracy of the proposed method from
these two perspectives.

From the perspective of classification, the overall accuracy (OA), the producer’s accuracy (PA), the user’s
accuracy (UA), and the Kappa coefficient (Kappa) [23] were evaluated using the accuracy evaluation
function of eCognition. The Kappa coefficient is the most significant one, because it marks the robustness
of an algorithm. If the coefficient is over 0.6, the algorithm is recognized as having good performance.
OA is an overall assessment which indicates the general performance of the technique.

OA =
TP + TN

T
,

Kappa =
T × (TP + TN)−∑

T × T −∑
,



Sensors 2018, 18, 2013 10 of 16

PA =
TP

TP + FN
,

UA =
TP

TP + FP
,

where ∑ = (TP + FP)× (TP + FN) + (FN + TN)× (FP + TN). TP is the correctly extracted pixels;
FP is the incorrectly extracted pixels; TN is the non-building pixels that are correctly rejected; FN is the
building pixels that are not detected.

From the perspective of the recognition rate [24], precision is the percentage of building objects
that are correctly classified by the SVM classifier. Recall is the percentage of correctly classified building
objects among all actual buildings. The F1-score is a combination of precision and recall:

Pre =
Ntp

Ntp + N f p
× 100%,

Rec =
Ntp

Ntp + N f n
× 100%,

F1 = 2× Pre× Rec
Pre + Rec

.

The building extraction can be considered to be a binary classification, where building objects are
positives and the remaining non-building objects are negatives. Ntp denotes the number of buildings
correctly extracted; the detected buildings are at least partially real. Nfp denotes the number of
buildings mistakenly extracted. Nfn denotes the number of non-buildings mistakenly extracted.

3. Experimental Results and Discussion

3.1. Selection of Building Samples

According to the characteristics of different sensor images and the principle that human eyes
can recognize houses in high-resolution images, a remote sensing classification system for houses
was determined. The houses were divided into four types: high-rise buildings, multistorey buildings,
factory buildings and general houses. Various typical house samples were selected through the
segmentation of GF-2, BJ-2 and UAV images. During sample selection, the samples were distributed
as evenly as possible and included each type of house. Given that the SVM model was used, roads,
vegetation, shadows, water and bare land should have been selected. To reduce the influence of mixed
pixels on classification accuracy, we tried to avoid mixed pixels when selecting a sample. The house
training samples and test samples are shown in Figure 6 and the selected land types and their quantities
are listed in Table 3.
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Table 3. Sample statistics selected from different high-resolution images.

Data Sample Category Building Road VegetationShadow Water Bare Land

GF-2 image Training samples
Testing samples

95
106

75
92

85
113

68
72

70
85

92
110

BJ-2 image Training samples
Testing samples

95
102

80
95

87
92

79
86

–
–

91
95

UAV image Training samples
Testing samples

105
112

110
115

95
102

90
98

–
–

90
102

3.2. Building Identification Results and Accuracy of the Proposed Method

The new method was validated with three images captured by the GF-2 satellite, BJ-2 satellite,
and UAV. These images described parts of urban and rural areas. However, visual interpretation on the
image of the entire administrative area is rarely practical; as such, three typical images, which contained
dark roofs and similar spectral characteristics with roads, were selected to obtain reliable results on
performance. Therefore, the performances of our feature optimization algorithm may not seem the
same as those in other studies. However, the proposed method acquired satisfactory results under
relatively poor conditions, and high accuracy would be easily accessible. The experiments were
performed 15 times on the three resolution images (Figure 7a: GF-2; Figure 7b: BJ-2; Figure 7c: UAV),
and the average value represents the highest recognition accuracy. Figure 7a shows the housing
extraction results of GF-2 imagery; in the figure, buildings are differentiated from other land types,
especially high-rise and multistorey buildings in urban areas. Figure 7b was the most difficult to detect
among the three images, because all the buildings and roads shared similar spectral characteristics.
It is difficult to distinguish buildings from the background when there is no shadow from the building.
We obtained four different rural houses in the UAV remote sensing images and compared the proposed
algorithm with manual visual interpretation. The experimental results are shown in Figure 7c. The left
image is the original remote sensing image; the black area on the right represents the results of the
proposed algorithm, and the red polygons represent the visual interpretation results.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 16 

 

Table 3. Sample statistics selected from different high-resolution images. 

Data Sample Category Building Road Vegetation Shadow Water Bare Land 

GF-2 image 
Training samples 

Testing samples 

95 

106 

75 

92 

85 

113 

68 

72 

70 

85 

92 

110 

BJ-2 image 
Training samples 

Testing samples 

95 

102 

80 

95 

87 

92 

79 

86 

-- 

-- 

91 

95 

UAV image 
Training samples 

Testing samples 

105 

112 

110 

115 

95 

102 

90 

98 

-- 

-- 

90 

102 

3.2. Building Identification Results and Accuracy of the Proposed Method 

The new method was validated with three images captured by the GF-2 satellite, BJ-2 satellite, 

and UAV. These images described parts of urban and rural areas. However, visual interpretation on 

the image of the entire administrative area is rarely practical; as such, three typical images, which 

contained dark roofs and similar spectral characteristics with roads, were selected to obtain reliable 

results on performance. Therefore, the performances of our feature optimization algorithm may not 

seem the same as those in other studies. However, the proposed method acquired satisfactory 

results under relatively poor conditions, and high accuracy would be easily accessible. The 

experiments were performed 15 times on the three resolution images (Figure 7a: GF-2; Figure 7b: 

BJ-2; Figure 7c: UAV), and the average value represents the highest recognition accuracy. Figure 7a 

shows the housing extraction results of GF-2 imagery; in the figure, buildings are differentiated from 

other land types, especially high-rise and multistorey buildings in urban areas. Figure 7b was the 

most difficult to detect among the three images, because all the buildings and roads shared similar 

spectral characteristics. It is difficult to distinguish buildings from the background when there is no 

shadow from the building. We obtained four different rural houses in the UAV remote sensing 

images and compared the proposed algorithm with manual visual interpretation. The experimental 

results are shown in Figure 7c. The left image is the original remote sensing image; the black area on 

the right represents the results of the proposed algorithm, and the red polygons represent the visual 

interpretation results. 

  
(a) (b) 

Figure 7. Cont.



Sensors 2018, 18, 2013 12 of 16

Sensors 2018, 18, x FOR PEER REVIEW  12 of 16 

 

 
(c) 

Figure 7. Extraction results of urban and rural areas. 

For the optimal accuracy of building identification, the selected feature subset of image 1 (GF-2) 

contains the mean b, mean r, SBI, GLCM mean (all direction), MBI, NDVI, length/width and the 

elliptic fit; image 2 (BJ-2) contains the max.diff, mean r, shape index, GLCM homogeneity (all 

directions), GLDV entropy and Chen3; image 3 (UAV) contains the ratio g, green index, brightness, 

rectangular Fit, density, GLCM SD, GLCM ASM, main direction, length/width and the elliptic fit. 

The stastics analysis of the accuracy is shown in Table 4. The new technique has a robust kappa 

coefficient, concentrated at 0.83. The preferred features are more robust and resist variation in the 

images, whether their buildings are densely distributed or not. The UAV images only have R, G, and 

B bands; as such, the longer the optimization time for extracting classification features is, the higher 

the number of features used for identification is. 

Table 4. Statistical analysis of the accuracy of proposed method for processing high-resolution imagery. 

High-Resolution Imagery GF-2 Satellite Image BJ-2 Satellite Image UAV Image 

Overall accuracy (OA) 88.52 89.75 91.3 

Kappa coefficient 0.8 0.83 0.85 

Producer’s Accuracy (PA)  91 93.12 96.21 

User’s Accuracy (UA) 89.65 89 90.38 

Number of features 8 6 10 

Optimization time 7.85 13.79 18 

3.3. Verification of Feature Selection Based on Kernel Density Estimation 

To analyze the object features, we used the KS density (Kernel Smoothing function estimate) to 

fit the probability distribution density of every feature for different category samples. The kernel 

distribution is a nonparametric representation of the probability density function (PDF) of a 

random variable. Fitting the probability distribution of an object feature by using the KS density is 

reasonable. The formula of the kernel density estimator is as follows [25]: 

𝑓ℎ̂(x) =
1

𝑛ℎ
𝑎𝑖=1

𝑛 𝐾(
𝑥−𝑥𝑖

ℎ
),  

where n is the sample size; xi is the object feature value; K(.) is the Kernel Smoothing function; and h 

is the bandwidth. The kernel distribution places the values into discrete bins and sums the 

component smoothing functions for each data value to produce a smooth, continuous probability 

curve. Figure 8 below represents the probability distribution density of different object features 

from the three typical study areas. Land types can be well distinguished based on the features, and 

residential land can be separated from other adjacent land types, thereby facilitating information 

extraction. 

Figure 7. Extraction results of urban and rural areas.

For the optimal accuracy of building identification, the selected feature subset of image 1 (GF-2)
contains the mean b, mean r, SBI, GLCM mean (all direction), MBI, NDVI, length/width and the elliptic
fit; image 2 (BJ-2) contains the max.diff, mean r, shape index, GLCM homogeneity (all directions),
GLDV entropy and Chen3; image 3 (UAV) contains the ratio g, green index, brightness, rectangular Fit,
density, GLCM SD, GLCM ASM, main direction, length/width and the elliptic fit. The stastics analysis
of the accuracy is shown in Table 4. The new technique has a robust kappa coefficient, concentrated at
0.83. The preferred features are more robust and resist variation in the images, whether their buildings
are densely distributed or not. The UAV images only have R, G, and B bands; as such, the longer the
optimization time for extracting classification features is, the higher the number of features used for
identification is.

Table 4. Statistical analysis of the accuracy of proposed method for processing high-resolution imagery.

High-Resolution Imagery GF-2 Satellite Image BJ-2 Satellite Image UAV Image

Overall accuracy (OA) 88.52 89.75 91.3
Kappa coefficient 0.8 0.83 0.85

Producer’s Accuracy (PA) 91 93.12 96.21
User’s Accuracy (UA) 89.65 89 90.38

Number of features 8 6 10
Optimization time 7.85 13.79 18

3.3. Verification of Feature Selection Based on Kernel Density Estimation

To analyze the object features, we used the KS density (Kernel Smoothing function estimate) to
fit the probability distribution density of every feature for different category samples. The kernel
distribution is a nonparametric representation of the probability density function (PDF) of a random
variable. Fitting the probability distribution of an object feature by using the KS density is reasonable.
The formula of the kernel density estimator is as follows [25]:

f̂h(x) =
1

nh
an

i=1K(
x− xi

h
),

where n is the sample size; xi is the object feature value; K(.) is the Kernel Smoothing function; and h is
the bandwidth. The kernel distribution places the values into discrete bins and sums the component
smoothing functions for each data value to produce a smooth, continuous probability curve. Figure 8
below represents the probability distribution density of different object features from the three typical
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study areas. Land types can be well distinguished based on the features, and residential land can be
separated from other adjacent land types, thereby facilitating information extraction.Sensors 2018, 18, x FOR PEER REVIEW  13 of 16 
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3.4. Accuracy and Efficiency Assessment of Selected Features

We compared the RFGASVM method with other methods, namely, SVM with all features and
RFSVM without GA, to optimize parameters. The OA values of RFGASVM, SVM (all features) and
RFSVM are shown in Table 5. The OA for features selected by RFGASVM had a mean value of over
80%, and UAV imagery reached 91.3%. This finding indicates that features selected by RFGASVM are
more representative than those selected by the other two methods. The accuracy of SVM (all features)
also reached 80%; however, the use of many features brings huge computational costs. RFSVM had
a lower accuracy than the other two methods. RFGASVM-selected features achieved higher accuracy
and effectiveness based on the OA, Kappa coefficient and feature number. Hence, the proposed method
is more suitable for the identification of residential land. Table 6 shows that our feature dimensionality
reduction and optimization strategy outperformed other methods for high-resolution remote sensing
images. The precision of each image was more than 85%, and the precision and recall were significantly
greater than the other two methods.
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Table 5. Comparison among RFGASVM and related methods.

Experimental Data Evaluation Index RFGASVM SVM (All Features) RFSVM

GF-2 imagery
Overall accuracy (OA)

Kappa coefficient
Number of features

88.52
0.90

8

86.46
0.88
85

83.02
0.85
13

BJ-2 imagery
Overall accuracy (OA)

Kappa coefficient
Number of features

89.75
0.93

6

81.06
0.85
85

80
0.90
13

UAV imagery
Overall accuracy (OA)

Kappa coefficient
Number of features

91.30
0.91
10

86
0.88
70

90.25
0.85
15

Table 6. Results of the test samples of satellite and UAV imagery between proposed RFGASVM and
related methods in terms of precision, recall and F1-score.

Experimental Data Method Precision Recall F1-Score

GF-2 imagery
RFGASVM

SVM (all features)
RFSVM

85.50
83.25
81.0

86.81
82.53
80.0

86.15
82.89
80.50

BJ-2 imagery
RFGASVM

SVM (all features)
RFSVM

89.51
78.67
80.10

88.12
77.50
79.1

88.81
78.08
79.60

UAV imagery
RFGASVM

SVM (all features)
RFSVM

92.25
86.51
87.35

90.05
78.81
85.0

91.14
82.48
86.41

Feature redundancy increases the size of the search space and affects the speed of algorithms.
We extracted the running time from different iteration times of BJ-2 imagery and later, compared the
proposed method with the SVM (all features) and RFSVM without GA to measure the computational
efficiency. As shown in Figure 9, the SVM (all features) method took more time using a large
number of features. This is because global optimization takes a lot of time with increased iterations.
The implementations of the RFGASVM took much less time—up to two times faster than the other two
methods. The results show that efficiency is greatly improved when dealing with images of large regions.
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4. Conclusions and Future Work

In this study, we proposed a novel feature dimensionality reduction and optimization strategy
to extract buildings using an object-based image analysis approach. The feature selection method
is based on the ReliefF, genetic algorithm (GA) and support vector machine (SVM) methods and is
called the “RFGASVM” method. We collected several samples using results from three high-resolution
remote sensing images (GaoFen-2, Beijing-2 and UAV images), and then selected features to extract
buildings to evaluate the performance of the proposed method. The approach consisted of four steps:
First, the image pixels from the image were grouped using a multiresolution segmentation algorithm
to form objects. Then, features were calculated by object-based image analysis, and stable features
were derived from the inherent characteristics of objects and were given the possibility of being
implemented on high-resolution images. Features were ranked based on ReliefF method to reduce the
redundancy. The preliminarily selected feature subset and SVM parameters were optimized based on
the genetic algorithm (GA) by selecting the optimal feature sets from the remaining sorted features.
Finally, the experimental results demonstrated the effectiveness of the proposed method in terms of
the efficiency and classification accuracy.

The proposed feature selection method reduces the redundancy for object-based image analysis
and is well-suited for high-resolution remote sensing images. In addition, it can be applied to feature
selection and information extraction and has the advantage of a higher reduction rate. In our future
research, we plan to design and implement high-quality samples for high-performance feature selection.

Author Contributions: Z.Y., W.S. and W.F. assisted with the study design and the interpretation of the results;
Z.R. designed and wrote the paper.

Funding: This research was funded by the National Key Research and Development Program of China
(grant number 2017YFB0504100, 2016YFC0803000), Major Project of High Resolution Earth Observation System
(Civil Part) (00-Y30B15-9001-14/16-1) and Youth Innovation Promotion Association of CAS (2015129).

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatial-Contextual
Information in Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 631–651. [CrossRef]

2. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.;
van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm.
ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [CrossRef] [PubMed]

3. Laliberte, A.S.; Browning, D.M.; Rango, A. A comparison of three feature selection methods for object-based
classification of subdecimeter resolution UltraCamL imagery. Int. J. Appl. Earth Observ. Geoinf. 2012, 15,
70–78. [CrossRef]

4. Takayama, T.; Iwasaki, A. Optimal wavelength selection on hyperspectral data with fused lasso for biomass
estimation of tropical rain forest. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 8, 101–108.

5. Yu, X.; Zhan, F.; Liao, M.; Hu, J. Object-oriented feature selection algorithms based on improved SEaTH
algorithms. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 921–924. [CrossRef]

6. Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data.
Proc. Comput. Syst. Bioinf. 2003, 3, 523–528.

7. El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D. A two-stage gene selection scheme utilizing
MRMR filter and GA wrapper. Knowl. Inf. Syst. 2011, 26, 487. [CrossRef]

8. Rajesh, S.; Arivazhagan, S.; Moses, K.P.; Abisekaraj, R. Genetic Algorithm Based Feature Subset Selection
for Land Cover/Land Use Mapping Using Wavelet Packet Transform. J. Indian Soc. Remote Sens. 2013, 41,
237–248. [CrossRef]

9. Wang, Z.; Zhang, Y.; Chen, Z.; Yang, H.; Sun, Y.; Kang, J.; Yang, Y.; Liang, X. Application of Relief algorithm to
selection features sets for classification of high resolution remote sensing image. In Proceedings of the 2016
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016;
pp. 755–758. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2012.2211551
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://www.ncbi.nlm.nih.gov/pubmed/24623958
http://dx.doi.org/10.1016/j.jag.2011.05.011
http://dx.doi.org/10.13203/j.whugis2012.08.005
http://dx.doi.org/10.1007/s10115-010-0288-x
http://dx.doi.org/10.1007/s12524-012-0208-5
http://dx.doi.org/10.1109/IGARSS.2016.7729190


Sensors 2018, 18, 2013 16 of 16

10. Chang, X.; He, L. System Noise Removal for Gaofen-4 Area-Array Camera. Remote Sens. 2018, 10, 759.
[CrossRef]

11. Nussbaum, S.; Menz, G. Object-Based Image Analysis and Treaty Verification; Springer B.V.: Heidelberg,
Germany, 2008.

12. Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from QuickBird data in Riode
janeiro using an object-based approach. In Proceedings of the 1st International Conference on Object-based
Image Analysis, Salzburg University, Salzburg, Austria, 4–5 July 2006.

13. Vu, T.T.; Matsuoka, M.; Yamazaki, F. Shadow analysis in assisting damage detection due to earthquakes
from Quickbird imagery. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004;
pp. 607–610.

14. Felzenszwalb, P.F. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181.
[CrossRef]

15. Hu, Z.; Li, Q.; Zou, Q.; Zhang, Q.; Wu, G. A Bilevel Scale-Sets Model for Hierarchical Representation of
Large Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 12. [CrossRef]

16. Huang, Y.; McCullagh, P.J.; Black, N.D. An optimization of ReliefF for classification in large datasets.
Data Knowl. Eng. 2009, 68, 1348–1356. [CrossRef]

17. Spolaor, N.; Cherman, E.A.; Monard, M.C.; Lee, H.D. ReliefF for multi-label feature selection. In Proceedings
of the 2nd Brazilian Conference on Intelligent Systems, Fortaleza, Brazil, 20–24 October 2013; pp. 6–11.

18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn 1995, 20, 273–297. [CrossRef]
19. Devroye, L.; Györfi, L.; Lugosi, G. Vapnik-Chervonenkis theory. In A Probabilistic Theory of Pattern Recognition;

Springer: New York, NY, USA, 1996; pp. 187–213.
20. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data

selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM),
logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazard. Risk 2017, 9, 49–69.
[CrossRef]

21. Zhang, R.; Ma, J.W. Feature selection for hyperspectral data based on recursive support vector machines.
Int. J. Remote Sens. 2009, 30, 3669–3677. [CrossRef]

22. Ye, F. Evolving the SVM model based on a hybrid method using swarm optimization techniques in
combination with a genetic algorithm for medical diagnosis. Multimed. Tools Appl. 2018, 77, 3889–3918.
[CrossRef]

23. Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI
Imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [CrossRef]

24. Yang, X.; Qin, X.; Wang, J.; Wang, J.; Ye, X.; Qin, Q. Building façade recognition using oblique aerial images.
Remote Sens. 2015, 7, 10562–10588. [CrossRef]

25. Xu, X.Y.; Yan, Z.; Xu, S.L. Estimating wind speed probability distribution by diffusion-based kernel density
method. Electr. Power Syst. Res. 2015, 121, 28–37. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs10050759
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
http://dx.doi.org/10.1109/TGRS.2016.2600636
http://dx.doi.org/10.1016/j.datak.2009.07.011
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1080/19475705.2017.1407368
http://dx.doi.org/10.1080/01431160802609718
http://dx.doi.org/10.1007/s11042-016-4233-1
http://dx.doi.org/10.3390/rs9060596
http://dx.doi.org/10.3390/rs70810562
http://dx.doi.org/10.1016/j.epsr.2014.11.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Data Sets 
	Related Theories 
	Multiresolution Segmentation Methods Based on High-Resolution Remote Sensing Images 
	Feature Extraction Structure 
	Feature Selection Based on ReliefF Algorithm and Coupled GA-SVM Models 

	Accuracy Assessment 

	Experimental Results and Discussion 
	Selection of Building Samples 
	Building Identification Results and Accuracy of the Proposed Method 
	Verification of Feature Selection Based on Kernel Density Estimation 
	Accuracy and Efficiency Assessment of Selected Features 

	Conclusions and Future Work 
	References

