Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM
<p>BP neural network model structure.</p> "> Figure 2
<p>The flowchart of MCS-BP.</p> "> Figure 3
<p>Structure flow of the power transformer fault diagnosis process.</p> "> Figure 4
<p>The classification results of different models. (<b>a</b>), (<b>c</b>), (<b>e</b>) and (<b>g</b>) represent the results of train sample classification for different methods, respectively. (<b>b</b>), (<b>d</b>), (<b>f</b>) and (<b>h</b>) are the results of test sample classification for different methods, respectively.</p> "> Figure 5
<p>The curve of fitness of MCS-BP.</p> "> Figure 6
<p>The curve of ROC-AUC of different models. (<b>a</b>–<b>d</b>) represent the receiver operating characteristic curve with AUC for MCS-BP, MVO-MLP, PSO-BP and GA-BP, respectively.</p> "> Figure 6 Cont.
<p>The curve of ROC-AUC of different models. (<b>a</b>–<b>d</b>) represent the receiver operating characteristic curve with AUC for MCS-BP, MVO-MLP, PSO-BP and GA-BP, respectively.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Modified Cuckoo Search (MCS) Algorithm
Algorithm 1: Pseudo-code of the modified CS algorithm |
2.2. Back-Propagation (BP) Neural Network
- Feed-forwardAfter recording the input value vector x, the activation in the input layer l can be computed in a simple and compact vectorized form:To set the corresponding activation, this paper uses the most popular sigmoid function:The quadratic error criterion function of sample n is C:
- Back-PropagationWhile reaching the layer L, the output error can be calculated byAccording to the error gradient descent method, the threshold can be calculated as follows:Any weight in the network is:By combining Label (11) with Label (12), the error goes backward through the activation function in layer l.The BP neural network model structure can be seen in Figure 1.
2.3. MCS Optimized BP Neural Network (MCS-BP)
3. MCS-BP for Power Transformer Fault Diagnosis Platform
4. Experimental Setup and Results
4.1. Experimental Setup
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PHM | Prognostic and health management |
MCS | Modified Cuckoo Search Algorithm |
BP | Back-propagation |
MCS-BP | Modified Cuckoo Search Algorithm optimized Back-propagation neural network |
DGA | Dissolved gas analysis |
GA | Genetic algorithm |
PCA | Principal component analysis |
PSO | Particle Swarm Optimization |
IR | improvement rate |
step-size | |
discovery probability | |
f | fitness function |
Lévy exponent | |
switching probability | |
mutation probability | |
activation functions | |
C | cost function |
output error | |
MVO | multi-verse optimizer |
MLP | multi-layer perceptron |
PNN | probability neural network |
MSE | mean square error |
SVM | support vector machine |
the nest in t generation | |
the nest in t + 1 generation |
References
- Wang, T.; He, Y.; Li, B.; Shi, T. Transformer Fault Diagnosis Using Self-powered RFID Sensor and Deep Learning Approach. IEEE Sens. J. 2018. [Google Scholar] [CrossRef]
- Tang, S.; Hale, C.; Thaker, H. Reliability modeling of power transformers with maintenance outage. Syst. Sci. Control Eng. Open Access J. 2014, 2, 316–324. [Google Scholar] [CrossRef]
- Zeng, W.; Yang, Y.; Gan, C.; Li, H.; Liu, G. Study on Intelligent Development of Power Transformer On-Line Monitoring Based on the Data of DGA. In Proceedings of the Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–28 March 2011; pp. 1–4. [Google Scholar]
- Abu-Elanien, A.E.B.; Salama, M.M.A.; Ibrahim, M. Calculation of a Health Index for Oil-Immersed Transformers Rated Under 69 kV Using Fuzzy Logic. IEEE Trans. Power Deliv. 2012, 27, 2029–2036. [Google Scholar] [CrossRef]
- Mauntz, M.; Peuser, J. Continuous condition monitoring of high voltage transformers by direct sensor monitoring of oil aging for a stable power network. In Proceedings of the IEEE Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, Czech Republic, 6–8 September 2016; pp. 1–4. [Google Scholar]
- Bakshi, A.; Kulkarni, S.V. Eigenvalue Analysis for Investigation of Tilting of Transformer Winding Conductors Under Axial Short-Circuit Forces. IEEE Trans. Power Deliv. 2011, 26, 2505–2512. [Google Scholar] [CrossRef]
- Rybel, T.D.; Singh, A.; Vandermaar, J.A.; Wang, M.; Marti, J.R.; Srivastava, K.D. Apparatus for Online Power Transformer Winding Monitoring Using Bushing Tap Injection. IEEE Trans. Power Deliv. 2009, 24, 996–1003. [Google Scholar] [CrossRef]
- Khan, S.A.; Equbal, M.D.; Islam, T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 590–596. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; An, W.; Sun, C.; Xie, H.; Rao, J. Power transformer fault diagnosis based on DGA combined with cloud model. In Proceedings of the 2014 International Conference on High Voltage Engineering and Application (ICHVE), Poznan, Poland, 8–11 September 2014; pp. 1–4. [Google Scholar]
- Sarma, D.S.; Kalyani, G. ANN approach for condition monitoring of power transformers using DGA. In Proceedings of the 2004 IEEE Region 10 Conference (TENCON 2004), Chiang Mai, Thailand, 21–24 November 2004; Volume 100, pp. 444–447. [Google Scholar]
- Palani, A.; Santhi, S.; Gopalakrishna, S.; Jayashankar, V. Real-time techniques to measure winding displacement in transformers during short-circuit tests. IEEE Trans. Power Deliv. 2008, 23, 726–732. [Google Scholar] [CrossRef]
- Ahmed, I. Use of Frequency Response Analysis to Detect Transformer Winding Movement. Ph.D. Thesis, Murdoch University, Hong Kong, China, 2013. [Google Scholar]
- Waghmare, M.H.V. Modeling of Transformer DGA using IEC & Fuzzy Based Three Gas Ratio Method. Int. J. Eng. Res. Technol. 2014, 3, 1149–1152. [Google Scholar]
- Shen, M.K.; Huang, Z.Y.; Wang, Z.H.; Zhou, J.H. Prediction of coal ash deformation temperature based on Cuckoo Search and BP Neural Network. J. Fuel Chem. Technol. 2014, 52, 89–90. [Google Scholar]
- Pratimsarangi, P.; Sahu, A.; Panda, M. A Hybrid Differential Evolution and Back-Propagation Algorithm for Feedforward Neural Network Training. Int. J. Comput. Appl. 2013, 84, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bacha, K.; Souahlia, S.; Gossa, M. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electr. Power Syst. Res. 2012, 83, 73–79. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Wang, K.; Wang, J.; Zhou, T.; Zhang, Y. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1198–1206. [Google Scholar] [CrossRef]
- Wagh, N.; Deshpande, D.M. Investigations on incipient fault diagnosis of power transformer using neural networks and adaptive neurofuzzy inference system. Appl. Comput. Intell. Soft Comput. 2014, 2014, 135–143. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Wang, B. Hybrid PSO-BP Based Probabilistic Neural Network for Power Transformer Fault Diagnosis. In Proceedings of the International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009; pp. 545–549. [Google Scholar]
- Trappey, A.J.C.; Trappey, C.V.; Ma, L.; Chang, J.C.M. Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions. Comput. Ind. Eng. 2015, 84, 3–11. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, J.; Wei, H.; Zhao, J.; Liao, R. A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers. Electr. Power Syst. Res. 2018, 155, 196–205. [Google Scholar] [CrossRef]
- Zhou, A.; Yu, D.; Zhang, W. A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Adv. Eng. Inform. 2015, 29, 115–125. [Google Scholar] [CrossRef]
- Song, L.K.; Fei, C.W.; Bai, G.C.; Yu, L.C. Dynamic neural network method-based improved PSO and BR algorithms for transient probabilistic analysis of flexible mechanism. Adv. Eng. Inform. 2017, 33, 144–153. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Z.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv. Eng. Inform. 2017, 32, 139–151. [Google Scholar] [CrossRef]
- Evsukoff, A.; Schirru, R. Neuro-fuzzy systems for fault detection and isolation in nuclear reactors. Adv. Eng. Inform. 2005, 19, 55–66. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Dong, H.; Yang, C. Cuckoo Search Optimized NN-based Fault Diagnosis Approach for Power Transformer PHM. In Proceedings of the International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC 2018), Xi’an, China, 15–17 August 2018. [Google Scholar]
- Yang, X.S.; Deb, S. Eagle Strategy Using Levy Walk and Firefly Algorithms for Stochastic Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–111. [Google Scholar]
- Yang, X.S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Valian, E.; Mohanna, S.; Tavakoli, S. Improved cuckoo search algorithm for feedforward neural network training. Int. J. Artif. Intell. Appl. 2011, 2, 36–43. [Google Scholar]
- Cheng, J.; Wang, L.; Xiong, Y. Modified cuckoo search algorithm and the prediction of flashover voltage of insulators. Neural Comput. Appl. 2018, 30, 355–370. [Google Scholar] [CrossRef]
- Yang, X.S. Metaheuristic Optimization: Nature-Inspired Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 405–420. [Google Scholar]
- Han, X.; Xiong, X.; Fu, D. A New Method for Image Segmentation Based on BP Neural Network and Gravitational Search Algorithm Enhanced by Cat Chaotic Mapping; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2015; pp. 855–873. [Google Scholar]
- Liu, Y.K.; Xie, F.; Xie, C.L.; Peng, M.J.; Wu, G.H.; Xia, H. Prediction of time series of NPP operating parameters using dynamic model based on BP neural network. Ann. Nucl. Energy 2015, 85, 566–575. [Google Scholar] [CrossRef]
- Liu, N.; Yang, H.; Li, H.; Yan, S.; Zhang, H.; Tang, W. BP artificial neural network modeling for accurate radius prediction and application in incremental in-plane bending. Int. J. Adv. Manuf. Technol. 2015, 80, 971–984. [Google Scholar] [CrossRef]
- Wang, H.; Kong, C.; Li, D.; Qin, N.; Fan, H.; Hong, H.; Luo, Y. Modeling Quality Changes in Brined Bream (Megalobrama amblycephala) Fillets During Storage: Comparison of the Arrhenius Model, BP, and RBF Neural Network. Food Bioprocess Technol. 2015, 8, 2429–2443. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Diao, M.; Gao, W.; Qi, Z. Performance enhancement of INS/CNS integration navigation system based on particle swarm optimization back propagation neural network. Ocean Eng. 2015, 108, 33–45. [Google Scholar] [CrossRef]
- Duval, M.; Depabla, A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electr. Insul. Mag. 2002, 17, 31–41. [Google Scholar] [CrossRef]
Fault Type | |||
---|---|---|---|
PD | <0.1 | <0.1 | <0.2 |
D1 | >1 | 0.1–0.5 | >1 |
D2 | 0.6–2.5 | 0.1–1 | >2 |
T1 | NS | >1/NS | <1 |
T2 | <0.1 | >1 | 1–4 |
T3 | <0.2 | >1 | >4 |
NO. | Fault Type | Fault Type Code |
---|---|---|
Fault 1 | Thermal faults T > 700 C | T3 |
Fault 2 | Thermal faults T < 300 C | T1 |
Fault 3 | High energy discharge | D2 |
Fault 4 | Low energy discharge | D1 |
Fault 5 | Partial discharge | PD |
Fault Type | |||
---|---|---|---|
0.019 | 0.0899 | 2.157 | T1 |
0.029 | 0.231 | 2.654 | T1 |
0.0246 | 0.9655 | 8.2797 | T3 |
0.0541 | 1.2551 | 8.9697 | T3 |
1.38 | 0.211 | 5.396 | D2 |
0.12 | 0.438 | 5.664 | D2 |
8.097 | 2.694 | 1.752 | D1 |
8.382 | 2.708 | 1.768 | D1 |
0 | 0.041 | 0.149 | PD |
0.088 | 0.052 | 0.099 | PD |
T3 | T1 | D2 | D1 | PD | |
---|---|---|---|---|---|
Coding format | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 0 | |
0 | 0 | 0 | 1 | 0 | |
0 | 0 | 0 | 0 | 1 |
Fault Type | Accuracy Rate (%) | ||
---|---|---|---|
BP | CS-BP | MCS-BP | |
T3 | 100.00 | 100.00 | 100.00 |
T1 | 100.00 | 85.71 | 100.00 |
D2 | 85.71 | 85.71 | 85.71 |
D1 | 100.00 | 100.00 | 100.00 |
PD | 0.00 | 100.00 | 100.00 |
Total | 77.14 | 94.29 | 97.14 * |
Model | MSE of Train Sample | MSE of Test Sample |
---|---|---|
BP | 0.0330 | 0.1571 |
CS-BP | 0.0053 | 0.0220 |
MCS-BP | 0.0058 | 0.0204 |
Fault Type | Accuracy Rate (%) | |||||
---|---|---|---|---|---|---|
MCS-BP | MVO-MLP | PSO-BP | GA-BP | PNN | SVM | |
T3 | 100.00 | 100.00 | 100.00 | 100.00 | 83.33 | 83.33 |
T1 | 100.00 | 71.43 | 85.71 | 57.14 | 85.71 | 28.57 |
D2 | 85.71 | 100.00 | 85.71 | 100.00 | 100.00 | 71.43 |
D1 | 100.00 | 100.00 | 100.00 | 100.00 | 66.67 | 100.00 |
PD | 100.00 | 85.71 | 85.71 | 85.71 | 85.71 | 85.71 |
Total | 97.14 * | 91.43 | 91.43 | 88.57 | 78.57 | 73.81 |
Fault Type | Macro F1-Score (%) | |||||
---|---|---|---|---|---|---|
MCS-BP | MVO-MLP | PSO-BP | GA-BP | PNN | SVM | |
T3 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 90.91 |
T1 | 100.00 | 92.31 | 60.00 | 92.30 | 44.44 | 44.44 |
D2 | 92.30 | 100.00 | 100.00 | 92.30 | 100.00 | 83.33 |
D1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
PD | 100.00 | 92.30 | 92.30 | 92.30 | 92.30 | 92.31 |
Macro F1-score | 98.46 * | 96.92 | 90.46 | 95.38 | 87.35 | 82.20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Yang, X.; Dong, H.; Xie, Z.; Yang, C. Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM. Sensors 2018, 18, 4430. https://doi.org/10.3390/s18124430
Li A, Yang X, Dong H, Xie Z, Yang C. Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM. Sensors. 2018; 18(12):4430. https://doi.org/10.3390/s18124430
Chicago/Turabian StyleLi, Anyi, Xiaohui Yang, Huanyu Dong, Zihao Xie, and Chunsheng Yang. 2018. "Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM" Sensors 18, no. 12: 4430. https://doi.org/10.3390/s18124430
APA StyleLi, A., Yang, X., Dong, H., Xie, Z., & Yang, C. (2018). Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM. Sensors, 18(12), 4430. https://doi.org/10.3390/s18124430