Measurement of Core Body Temperature Using Graphene-Inked Infrared Thermopile Sensor
<p>Coating process to obtain the graphene-inked thermopile. Adapted from [<a href="#B15-sensors-18-03315" class="html-bibr">15</a>].</p> "> Figure 2
<p>Amplified image of the graphene-inked MLX90614 thermopile.</p> "> Figure 3
<p>(<b>a</b>) Assembled device; and (<b>b</b>) monitoring of CBT on the smartphone.</p> "> Figure 4
<p>Raw temperature data acquired from the tympanic membrane.</p> "> Figure 5
<p>Bland–Altman plot between: (<b>a</b>) CBT acquired with the original thermopile and the reference thermometer; and (<b>b</b>) CBT measured with the graphene-inked thermopile and the reference thermometer.</p> "> Figure 5 Cont.
<p>Bland–Altman plot between: (<b>a</b>) CBT acquired with the original thermopile and the reference thermometer; and (<b>b</b>) CBT measured with the graphene-inked thermopile and the reference thermometer.</p> "> Figure 6
<p>Temperature data during physical activity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sensor Characterization
3.2. Device Operation
3.3. Experimental Results under Resting Conditions
3.4. Experimental Results under Physical Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- 1. Ling, T.H.Y.; Wong, L.J.; Tan, J.E.H.; Kiu, K.Y. Non-intrusive human body temperature acquisition and monitoring system. In Proceedings of the 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur, Malaysia, 9–12 February 2015; pp. 16–20. [Google Scholar]
- Sun, G.; Matsui, T.; Watai, Y.; Kim, S.; Kirimoto, T.; Suzuki, S.; Hakozaki, Y. Vital-SCOPE: Design and Evaluation of a Smart Vital Sign Monitor for Simultaneous Measurement of Pulse Rate, Respiratory Rate, and Body Temperature for Patient Monitoring. J. Sens. 2018, 2018, 4371872. [Google Scholar] [CrossRef]
- Sun, G.; Saga, T.; Shimizu, T.; Hakozaki, Y.; Matsui, T. Fever screening of seasonal influenza patients using a cost-effective thermopile array with small pixels for close-range thermometry. Int. J. Infect. Dis. 2014, 25, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Bock, M.; Hohlfeld, U.; Von Engeln, K.; Meier, P.A.; Motsch, J.; Tasman, A.J. The accuracy of a new infrared ear thermometer in patients undergoing cardiac surgery. Can. J. Anest. 2005, 52, 1083. [Google Scholar] [CrossRef]
- Yeoh, W.K.; Lee, J.K.W.; Lim, H.Y.; Gan, C.W.; Liang, W.; Tan, K.K. Re-visiting the tympanic membrane vicinity as core body temperature measurement site. PLoS ONE 2017, 12, e0174120. [Google Scholar] [CrossRef] [PubMed]
- Kiya, T.; Yamakage, M.; Hayase, T.; Satoh, J.I.; Namiki, A. The usefulness of an earphone-type infrared tympanic thermometer for intraoperative core temperature monitoring. Anest. Analg. 2017, 105, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Boano, C.A.; Lasagni, M.; Römer, K. Non-invasive measurement of core body temperature in Marathon runners. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks (BSN), Cambridge, MA, USA, 6–9 May 2013; pp. 1–6. [Google Scholar]
- Ray, P.P. An IR Sensor Based Smart System to Approximate Core Body Temperature. J. Med. Syst. 2017, 41, 123. [Google Scholar] [CrossRef] [PubMed]
- Celik, N.; Balachandran, W.; Manivannan, N. Graphene-based biosensors: Methods, analysis and future perspectives. IET Circuits Device Syst. 2015, 9, 434–445. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [PubMed] [Green Version]
- Celik, N.; Manivannan, N.; Strudwick, A.; Balachandran, W. Graphene-enabled electrodes for electrocardiogram monitoring. Nanomaterials 2016, 6, 156. [Google Scholar] [CrossRef] [PubMed]
- Celik, N.; Balachandran, W.; Manivannan, N.; Winter, E.M.; Schnalzer, B.; Burgsteiner, H. Wearable mobile ear-based ECG monitoring device using graphene-coated sensors. In Proceedings of the IEEE Sensors Conference (SENSORS 2017), Glasgow, UK, 29 October–1 November 2017. [Google Scholar]
- Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341–1349. [Google Scholar] [CrossRef]
- Melexis. Digital Plug & Play Infrared Thermometer in a TO-Can MLX90614. 2018. Available online: https://www.melexis.com/en/product/MLX90614/Digital-Plug-Play-Infrared-Thermometer-TO-Can (accessed on 4 June 2018).
- Randviir, E.P.; Brownson, D.A.; Banks, C.E. A decade of graphene research: Production, applications and outlook. MaterialsToday 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Lee, W.; Jung, H.; Bok, I.; Kim, C.; Kwon, O.; Choi, T.; You, H. Measurement and Application of 3D Ear Images for Earphone Design. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Washington, DC, USA, 19–23 September 2016; Volume 60, No. 1. pp. 1053–1057. [Google Scholar]
- British Standards Institution. BS EN 60268-7:2011 Sound System Equipment—Part 7: Headphones and Earphones; British Standards Institution: London, UK, 2011. [Google Scholar]
- Liess, M.; Karagözoglu, H.; Ernst, H. Reducing thermal transient induced errors in thermopile sensors in ear thermometer applications. Sens. Actuators A Phys. 2009, 154, 1–6. [Google Scholar] [CrossRef]
- Gleeson, M. Temperature regulation during exercise. Int. J. Sports Med. 1998, 19, S96–S99. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaglla E., J.S.; Celik, N.; Balachandran, W. Measurement of Core Body Temperature Using Graphene-Inked Infrared Thermopile Sensor. Sensors 2018, 18, 3315. https://doi.org/10.3390/s18103315
Chaglla E. JS, Celik N, Balachandran W. Measurement of Core Body Temperature Using Graphene-Inked Infrared Thermopile Sensor. Sensors. 2018; 18(10):3315. https://doi.org/10.3390/s18103315
Chicago/Turabian StyleChaglla E., Jorge S., Numan Celik, and Wamadeva Balachandran. 2018. "Measurement of Core Body Temperature Using Graphene-Inked Infrared Thermopile Sensor" Sensors 18, no. 10: 3315. https://doi.org/10.3390/s18103315