A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring
<p>Sample recordings of electrocardiogram (ECG) and phonocardiography (PCG) signals.</p> "> Figure 2
<p>Noninvasive interferometric measurement probe.</p> "> Figure 3
<p>Basic schematic diagram for our noninvasive PPG-based interferometric sensors and adaptive system for fHR monitoring.</p> "> Figure 4
<p>Normalized Power Spectrum Density of data acquired from the test subject.</p> "> Figure 5
<p>Basic scheme of an adaptive <span class="html-italic">N</span>-th order FIR filter with transversal structure and the LMS Algorithm.</p> "> Figure 6
<p>Sample plots of real raw data acquired from the thoracic and abdominal sensors of two different test subjects. (<b>a</b>) volunteer No. 1; (<b>b</b>) volunteer No. 2.</p> "> Figure 7
<p>Modelled raw signal measured by <math display="inline"> <semantics> <mrow> <mi>I</mi> <msub> <mi>S</mi> <mi>T</mi> </msub> </mrow> </semantics> </math> in the abdominal region (mRR ∈ <12–16> rpm; mHR ∈ <65–85> bpm). (<b>Left</b>) 60 s; (<b>Right</b>) detail in the form of 2.3 s.</p> "> Figure 8
<p>Modelled raw signal represented by <math display="inline"> <semantics> <mrow> <mi>I</mi> <msub> <mi>S</mi> <mi>A</mi> </msub> </mrow> </semantics> </math> in the abdominal region (mRR ∈ <12–16> rpm; mHR ∈ <65–85> bpm, fHR ∈ <80–155> bpm, GA = 35 weeks, orientation of fetus: Right Occiput Posterior (ROP)). (<b>Left</b>) 60 s; (<b>Right</b>) detail in the form of 2.3 ss.</p> "> Figure 9
<p>Recording of a reference signal for the adaptive system represented by <math display="inline"> <semantics> <mrow> <mi>I</mi> <msub> <mi>S</mi> <mi>T</mi> </msub> </mrow> </semantics> </math> in the thoracic region.</p> "> Figure 10
<p>Input signal of the adaptive system formed by a mixture of maternal heart rate (mHR) and fetal heart rate (fHR).</p> "> Figure 11
<p>Output of the adaptive system when using (<b>a</b>) the Least Mean Square Algorithm (LMS) and (<b>b</b>) the Normalized Least Mean Square (NLMS) Algorithms.</p> "> Figure 12
<p>Modelled reference (ideal) signal represented by <math display="inline"> <semantics> <mrow> <mi>I</mi> <msub> <mi>S</mi> <mi>A</mi> </msub> </mrow> </semantics> </math> in the abdominal region without a maternal component (fHR ∈ <80–155> bpm, GA = 35 weeks, fetus position: Right Occiput Posterior (ROP)).</p> "> Figure 13
<p>Comparison of reference and predicted time course of fHR (<b>a</b>) physiological case; (<b>b</b>) pathological case.</p> "> Figure 14
<p>Bland-Altman statistics for reference and predicted values of fHR for (<b>a</b>) the LMS Algorithm; (<b>b</b>) The NLMS Algorithm.</p> "> Figure 15
<p>Detailed analysis of output from the adaptive system using (<b>a</b>) the LMS; and (<b>b</b>) the NLMS Algorithms.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Fetal Phonocardiography
2.2. Non-Invasive Measurement Probe and Measurement Scheme
- Direct Signal Subtraction: The signal detected on the abdomen called as aPCG signal is the sum of fPCG and mPCG signals. The easiest method for removing the undesirable mPCG from the aPCG signal is a direct subtraction of the values from . This approach cannot be used in practice as mPCGT measured by the thoracic fiber-optic sensor () is not identical to the mPCGA measured by the abdominal fiber-optic sensor (). When the signal spreads from the maternal heart to the abdomen, it is influenced by different factors in the unknown body environment such as distortions due to interferences and delay caused by the signal distribution in the human body. This fact is supported by real measurements (as explained in Section 3).
- Linear Filtering: The next method is to use linear filtering, i.e., frequency selective filtering. However, like direct signal subtraction, linear filtering cannot effectively eliminate the undesirable mPCG signal as the desired signal (fPCG) and the unwanted signal (mPCG) share overlapping spectra (Figure 4).
- Adaptive Filtering: If we accept the unknown environment confined between the thoracic and abdominal fiber-optic sensors as linear, we can successfully use an adaptive filter to eliminate the fPCG signal from the aPCG signal. As an adaptive filter, the well-known FIR filter [98] whose coefficients are continuously updated by an adaptive algorithm (such as LMS or NLMS) could be used. This algorithm monitors the input and output signals from the filter, and from the error signal , it tries to set filter coefficients most optimally in order to minimize the difference between the output and the required (ideal) signal. The aim of the filter is to reach a state in which the filtered thoracic mPCGT signal is the most similar to the abdominal mPCGA signal, which contaminates the fPCG signal reaching the abdominal part and whose value could be subsequently subtracted (eliminated).
2.3. Stochastic Gradient Based Adaptation
2.3.1. Implementation of Adaptive LMS Algorithm
2.3.2. The Normalized Least Mean Square (NLMS) Algorithm
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gabbe, S.G.; Niebyl, J.R.; Galan, H.L.; Jauniaux, E.R.M.; Simpson, J.L.; Driscoll, D.A. Obstetrics: Normal and Problem Pregnancies; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Oats, J.; Abraham, S. Llewellyn-Jones Fundamentals of Obstetrics and Gynaecology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Hacker, N.F.; Gambone, J.C.; Hobel, C.J. Hacker & Moore’s Essentials of Obstetrics and Gynecology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Alferic, Z.; Devane, D.; Gyte, G.M. Continuous Cardiotocography (CTG) as a form of Electronic Fetal Monitoring (EFM) for Fetal Assessment during Labour; The Cochrane Library: New York, NY, USA, 2013. [Google Scholar]
- Anath, C.V.; Chauhan, S.P.; Chen, H.Y.; Dalton, M.E.; Vintyileos, A.M. Electronic fetal monitoring in the United States: Temporal trends and adverse perinatal outcomes. Obstet. Gynecol. 2013, 121, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Ugwumadu, A. Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury. Best Pract. Res. Clin. Obstet. Gynaecol. 2013, 27, 509–536. [Google Scholar] [CrossRef] [PubMed]
- Devane, D.; Lalor, J.G.; Daly, S.; Cuthbert, A.; Smith, V. Cardiotocography versus Intermittent Auscultation of Fetal Heart on Admission to Labour Ward for Assessment of Fetal Wellbeing; The Cochrane Library: New York, NY, USA, 2012. [Google Scholar]
- Grivell, R.M.; Alfirevic, Z.; Gyte, G.M.; Devane, D. Antenatal Cardiotocography for Fetal Assessment; The Cochrane Library: New York, NY, USA, 2015. [Google Scholar]
- Ayres-de-Campos, D.; Spong, C.Y.; Chandraharan, E. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 2015, 131, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Visser, G.H.; Ayres-de-Campos, D. FIGO consensus guidelines on intrapartum fetal monitoring: Adjunctive technologies. Int. J. Gynecol. Obstet. 2015, 131, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Crowe, J.; Pieri, J.; Quartero, H.W.; Hayes-Gill, B.; James, D.; Stinstra, J.; Shakespeare, S. Monitoring the fetal heart non-invasively: A review of methods. J. Perinat. Med. 2001, 29, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Smith, D. Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine; Elsevier B.V.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Reinhard, J.; Hayes-Gill, B.R.; Schiermeier, S.; Hatzmann, W.; Herrmann, E.; Heinrich, T.M.; Louwen, F. Intrapartum signal quality with external fetal heart rate monitoring: A two way trial of external Doppler CTG ultrasound and the abdominal fetal electrocardiogram. Arch. Gynecol. Obstet. 2012, 286, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Rauf, Z.; O’Brien, E.; Stampalija, T.; Ilioniu, F.P.; Lavender, T.; Alfirevic, Z. Home labour induction with retrievable prostaglandin pessary and continuous telemetric trans-abdominal fetal ECG monitoring. PLoS ONE 2011, 6, e28129. [Google Scholar] [CrossRef] [PubMed]
- Nedoma, J.; Fajkus, M.; Siska, P.; Martinek, R.; Vasinek, V. Non-invasive fiber optic probe encapsulated into PolyDiMethylSiloxane for measuring respiratory and heart rate of the human body. Adv. Electr. Electr. Eng. 2017, 15, 93–100. [Google Scholar] [CrossRef]
- Martinek, R.; Kahankova, R.; Skutova, H.; Koudelka, P.; Zidek, J.; Koziorek, J. Adaptive Signal Processing Techniques for Extracting Abdominal Fetal Electrocardiogram. In Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 20–22 July 2016. [Google Scholar]
- Martinek, R.; Skutova, H.; Kahankova, R.; Koudelka, P.; Bilik, P.; Koziorek, J. Fetal ECG Extraction Based on Adaptive Neuro-Fuzzy Interference System. In Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 20–22 July 2016. [Google Scholar]
- Adam, J. The future of fetal monitoring. Rev. Obstet. Gynecol. 2012, 5, 132–136. [Google Scholar]
- Norén, H.; Carlsson, A. Reduced prevalence of metabolic acidosis at birth: An analysis of established STAN usage in the total population of deliveries in a Swedish district hospital. Am. J. Obstet. Gynecol. 2010, 202, 546.e1–546.e7. [Google Scholar] [CrossRef] [PubMed]
- Dziuda, L. Fiber-optic sensors for monitoring patient physiological parameters: A review of applicable technics and relevance to use during MRI procedures. J. Biomech. 2015, 20. [Google Scholar] [CrossRef]
- Fajkus, M.; Nedoma, J.; Martinek, R.; Vasinek, V.; Nazeran, H.; Siska, P. A Non-invasive Multichannel Hybrid Fiber-optic Sensor System for Vital Sign Monitoring. Sensors 2017, 17, 111. [Google Scholar] [CrossRef] [PubMed]
- Zazula, D. Application of Fibre-Optic Interferometry to Detection of Human Vital Sign. J. Laser Health Acad. 2012, 2012, 27–32. [Google Scholar]
- Zazula, D.; Sprager, S. Detection of the first heart sound using fibre-optic interferometric measurements and neural networks. In Proceedings of the Symposium on Neural Network Applications in Electrical Engineering, Belgrade, Serbia, 20–22 September 2012; pp. 171–176. [Google Scholar]
- Nedoma, J.; Zboril, O.; Fajkus, M.; Cubik, J.; Zavodny, P.; Novak, M.; Bednarek, L.; Martinek, R.; Vasinek, V. Fiber optic interferometer as a security element. In Proceedings of the SPIE—The International Society for Optical Engineering, Brussels, Belgium, 12–16 April 2016. [Google Scholar]
- Teixeira, J.G.; Leite, I.T.; Silva, S.; Frazao, O. Advanced fiber-optic acoustic sensors. Photonic Sens. 2014, 4, 198–208. [Google Scholar] [CrossRef]
- Byeong, H.L.; Young, H.K.; Kwan, S.P.; Joo, B.E.; Myoung, J.K.; Byung, S.R.; Hae, Y.C. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar]
- Vaisman, S.; Salem, S.Y.; Holcberg, G.; Geva, A.B. Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 2012, 42, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, F.; Horváth, C.; Balogh, A.T.; Hosszú, G. Fetal phonocardiography-past and future possibilities. Comput. Methods Prog. Biomed. 2011, 104, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Cesarelli, M.; Ruffo, M.; Romano, M.; Bifulco, P. Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Prog. Biomed. 2012, 107, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Kovâcs, F.; Török, M.; Habermajer, I. A rule-based phonocardiographic method for long-term fetal heart rate monitoring. IEEE Trans. Biomed. Eng. 2000, 47, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Nageotte, M.P. Fetal heart rate monitoring. Semin. Fetal Neonatal Med. 2015, 20, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Chethana, K.; Guru Prasad, A.S.; Omkar, S.N.; Asokan, S. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities. J. Biophotonics 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, M.; Sonobe, M.; Watanabe, K. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor. Biomed. Opt. Express 2016, 7, 3675–3685. [Google Scholar] [CrossRef] [PubMed]
- Gurkan, D.; Starodubov, D.; Xiaojing, Y. Monitoring of the heartbeat sounds using an optical fiber Bragg grating sensor. IEEE Sens. 2005, 2005, 306–309. [Google Scholar]
- Yang, X.; Chen, Z.; Elvin, C.S.M.; Janice, L.H.Y.; Ng, S.H.; Teo, J.T.; Wu, R. Textile Fiber Optic Microbend Sensor Used for Heartbeat and Respiration Monitoring. IEEE Sens. J. 2015, 15, 757–761. [Google Scholar] [CrossRef]
- Ciocchetti, M.; Massaroni, C.; Saccomandi, P.; Caponero, M.A.; Polimadei, A.; Formica, D.; Schena, E. Smart textile based on fiber bragg grating sensors for respiratory monitoring: Design and preliminary trials. Biosensors 2015, 5, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Dziuda, L.; Krej, M.; Skibniewski, F.W. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI. IEEE Sens. J. 2013, 13, 4986–4991. [Google Scholar] [CrossRef]
- Dziuda, L.; Skibniewski, F.W.; Krej, M.; Baran, P.M. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 2013, 18, 057006. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Teo, J.T.; Ng, S.H.; Yim, H. Smart pillow for heart rate monitoring using a fiber optic sensor. Opt. Fibers Sens. Devices Biomed. Diagn. Treat. 2011, 7894, 789402-1–789402-7. [Google Scholar]
- Chen, Z.; Teo, J.T.; Yang, X. In-bed fibre optic breathing and movement sensor for non-intrusive monitoring. Proc. SPIE 2009, 7173. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, S.; Shen, Z.; Zhao, J.; Miao, C.; Bai, H. FBG pulse wave demodulation method based on PCF modal interference filter. In Proceedings of the SPIE—The International Society for Optical Engineering, Beijing, China, 9 May 2016. [Google Scholar]
- Dziuda, L.; Skibniewski, F.W.; Krej, M.; Lewandowski, J. Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor. IEEE Trans. Biomed. Eng. 2012, 59, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Sprager, S.; Zazula, D. Heartbeat and respiration detection from optical interferometric signals by using a multimethod approach. IEEE Trans. Biomed. Eng. 2012, 59, 2922–2929. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Chen, Z.; Teo, J.T.; Ng, S.H.; Rumpel, H.; Lian, Y.; Yang, H.; Kei, P.L. Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans. Biomed. Eng. 2013, 60, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Olivero, M.; Perrone, G. Low-cost fiber bragg grating vibroacoustic sensor for voice and heartbeat detection. Appl. Opt. 2008, 47, 5123–5129. [Google Scholar] [CrossRef] [PubMed]
- Wo, J.; Wang, H.; Sun, Q.; Shum, P.P.; Liu, D. Noninvasive respiration movement sensor based on distributed Bragg reflector fiber laser with beat frequency interrogation. J. Biomed. Opt. 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Dziuda, L.; Skibniewski, F.W. A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors. Biocybern. Biomed. Eng. 2014, 34, 101–106. [Google Scholar] [CrossRef]
- Spillman, W.B., Jr.; Mayer, M.; Bennett, J.; Gong, J.; Meissner, K.E.; Davis, B.; Claus, R.O.; Muelenaer, A.A., Jr.; Xu, X. A ’smart’ bed for non-intrusive monitoring of patient physiological factors. J. Meas. Sci. Technol. 2004, 15, 1614–1620. [Google Scholar] [CrossRef]
- Witt, J.; Narbonneau, F.; Schukar, M.; Krebber, K.; de Jonckheere, J.; Jeanne, M.; Kinet, D.; Paquet, B.; Depre, A.; D’Angelo, L.T.; et al. Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens. J. 2012, 12, 246–254. [Google Scholar] [CrossRef]
- Chen, Z.; Lau, D.; Teo, J.T.; Ng, S.H.; Yang, X.; Kei, P.L. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Deepu, C.J.; Chen, Z.; Teo, J.T.; Ng, S.H.; Yang, X.; Lian, Y. Smart cushion for real-time heart rate monitoring. In Proceedings of the 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, Taiwan, 28–30 November 2012; pp. 53–56. [Google Scholar]
- Chen, Z.; Teo, J.T.; Ng, S.H.; Yang, X. Plastic optical fiber microbend sensor used as breathing sensor. Proc. IEEE Sens. 2012, 1–4. [Google Scholar] [CrossRef]
- Nishyama, M.; Miyamoto, M.; Watanabe, K. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J. Biomed. Opt. 2011, 16. [Google Scholar] [CrossRef] [PubMed]
- Nedoma, J.; Fajkus, M.; Bednarek, L.; Frnda, J.; Zavadil, J.; Vasinek, V. Encapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristics. Adv. Electr. Electron. Eng. 2016, 14. [Google Scholar] [CrossRef]
- Fajkus, M.; Nedoma, J.; Siska, P.; Vasinek, V. FBG sensor of breathing encapsulated into polydimethylsiloxane. Proceedings of SPIE—The International Society for Optical Engineering, Edinburgh, UK, 4–7 April 2016. [Google Scholar]
- Nedoma, J.; Fajkus, M.; Vasinek, V. Influence of PDMS encapsulation on the sensitivity and frequency range of fiber-optic interferometer. In Proceedings of the SPIE—The International Society for Optical Engineering, Edinburgh, UK, 4–7 April 2016. [Google Scholar]
- Sprager, S.; Donlagic, D.; Zazula, D. Monitoring of basic human vital functions using optical interferometer. Proc. IEEE ICSP 2010, 1738–1741. [Google Scholar] [CrossRef]
- Favero, F.C.; Villatoro, J.; Pruneri, V. Microstructured optical fiber interferometric breathing sensor. J. Biomed. Opt. 2012, 17. [Google Scholar] [CrossRef] [PubMed]
- Will, C.; Shi, K.; Lurz, F.; Weigel, R.; Koelpin, A. Intelligent signal processing routine for instantaneous heart rate detection using a Six-Port microwave interferometer. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, Bali, Indonesia, 9–12 November 2015. [Google Scholar]
- Sprager, S.; Donlagić, D.; Zazula, D. Estimation of heart rate, respiratory rate and motion by using optical interferometer as body sensor. In Proceedings of the IASTED International Conference on Signal and Image, Crete, Greece, 22–24 June 2013; pp. 280–287. [Google Scholar]
- Raj, C.G.; Harsha, V.S.; Gowthami, B.S.; Sunitha, R. Virtual Instrumentation Based Fetal ECG Extraction. Procedia Comput. Sci. 2015, 70, 289–295. [Google Scholar] [CrossRef]
- Ahuja, E.; Shaikh, F. A Novel Approach to FEG Extraction Based on Fast ICA. Available online: https://www.irjet.net/archives/V3/i4/IRJET-V3I4584.pdf (accessed on 18 April 2017).
- Gao, P.; Chang, E.; Wse, L. Bind separation of fetal ECG from single mixture using SVD and ICA. In Proceedings of the Joint Conference of the Fourth International Conference on Information, Communications & Signal Processing, Singapore, 15–18 December 2015. [Google Scholar]
- Jagannath, D.J.; Selvakumar, A.I. Issues and research on foetal electrocardiogram signal elicitation. Biomed. Signal Proc. Control 2014, 10, 224–244. [Google Scholar] [CrossRef]
- Bacharaki, E.; Nandi, A.K.; Zarzoso, V. Foetal ECG extraction using bling source separation methods. In Proceedings of the 8th European Signal Processing Conference (EUSIPCO), Trieste, Italy, 10–13 September 1996. [Google Scholar]
- Kumar, P.; Sharma, S.K.; Prasad, S. CAD for Detection of Fetal Electrocardiogram by using Wavelets and Neuro-Fuzzy Systems. Comput. Intell. Commun. Technol. 2016, 7546676, 587–590. [Google Scholar]
- Hassanpour, H.; Parsaei, A. Fetal ECG Extraction Using Wavelet Transform. In Proceedings of the International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce, Sydney, Australia, 28–30 November 2006. [Google Scholar]
- Karvounis, E.C.; Papaloukas, C.; Fotiadis, D.I.; Michails, L.K. Fetal heart rate extraction from composite maternal ECG using complex continuous wavelet transform. Comput. Cardiol. 2006, 31, 737–740. [Google Scholar]
- Martinek, R.; Zidek, J. A system for improving the diagnostic quality of fetal electrocardiogram. Przeglad Elektrotchniczny (Electr. Rev.) 2012, 88, 164–173. [Google Scholar]
- Liu, W.; Principe, J.C.; Haykin, S. Kernel Adaptive Filtering: A Comprehensive Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sayed, A.H. Fundamentals of Adaptive Filtering; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Vijaykumar, V.R.; Vanathi, P.T.; Kanagasapabathy, P. Modified adaptive filtering algorithm for noise cancellation in speech signals. Elektron. Elektrotech. 2015, 74, 17–20. [Google Scholar]
- Karaboga, N.; Latifoglu, F. Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2013, 26, 677–684. [Google Scholar] [CrossRef]
- Astrom, K.J.; Goodwin, G.C.; Kumar, P.R. Adaptive Control, Filtering, and Signal Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 74. [Google Scholar]
- Almasi, A.; Shamsollahi, M.B.; Senhadji, L. Bayesian denoising framework of phonocardiogram based on a new dynamical model. IRBM 2013, 34, 214–225. [Google Scholar] [CrossRef]
- Almasi, A.; Shamsollahi, M.B.; Senhadji, L. A dynamical model for generating synthetic phonocardiogram signals. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5686–5689. [Google Scholar]
- Martinek, R.; Sincl, A.; Vanus, J.; Kelnar, M.; Bilik, P.; Machacek, Z.; Zidek, J. Modelling of Fetal Hypoxic Conditions Based on Virtual Instrumentation. In Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, Villejuif (Paris-sud), France, 9–11 September 2015. [Google Scholar]
- Martinek, R.; Kelnar, M.; Vojcinak, P.; Koudelka, P.; Vanus, J.; Bilik, P.; Janku, P.; Nazeran, H.; Zidek, J. Virtual Simulator for The Generation of Patho-Physiological Foetal ECGs During the Prenatal Period. Electron. Lett. 2015, 51, 1738–1740. [Google Scholar] [CrossRef]
- Martinek, R.; Kelnar, M.; Koudelka, P.; Vanus, J.; Bilik, P.; Janku, P.; Nazeran, H.; Zidek, J. A Novel LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator. Physiol. Meas. 2016, 37, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Sameni, R.; Clifford, G.D.; Jutten, C.; Shamsollahi, M.B. Multichannel ECG and noise modeling: Application to maternal and fetal ECG signals. EURASIP J. Appl. Signal Process. 2007, 2007, 84–94. [Google Scholar] [CrossRef]
- McSharry, P.E.; Clifford, G.D.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, Z.; Yang, J.; Zhang, Y.; Durand, L.G.; Loew, M. Analysis of the first heart sound using the matching pursuit method. Med. Biol. Eng. Comput. 2001, 39, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Durand, L.G.; Pibarot, P. Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model. IEEE Trans. Biomed. Eng. 2001, 48, 277–283. [Google Scholar] [PubMed]
- Xu, J.; Durand, L.G.; Pibarot, P. Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart sound. IEEE Trans. Biomed. Eng. 2000, 47, 1328–1335. [Google Scholar] [PubMed]
- Minfen, S.; Fenglin, S. The analysis of phonocardiographic signals based on higher-order spectra. Signal Process. 1996, 1, 568–571. [Google Scholar]
- Sartwelle, T.P. Electronic fetal monitoring: A bridge too far. J. Legal Med. 2012, 33, 79–313. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.H.; Moghavvemi, M. Real Time Analysis of Fetal Phonocardiography. In Proceedings of the IEEE Region 10 Annual International Conference, Kuala Lumpur, Malaysia, 24–27 September 2000. [Google Scholar]
- Moghavvemi, M.; Tan, B.H.; TAN, S.Y. A non-invasive PC-based measurement of fetal phonocardiography. Sens. Actuators A Phys. 2003, 107, 96–103. [Google Scholar] [CrossRef]
- Varady, P.; Wildt, L.; Benyo, Z.; Hein, A. An advanced method in fetal phonocardiography. Comput. Methods Prog. Biomed. 2003, 71, 283–296. [Google Scholar] [CrossRef]
- Tang, H.; Li, T.; Qiu, T.; Park, Y. Fetal Heart Rate Monitoring from Phonocardiograph Signal Using Repetition Frequency of Heart Sound. J. Electr. Comput. Eng. 2016, 2016. [Google Scholar] [CrossRef]
- Sipka, G.; Szabo, T.; Zolei-Szenasi, R.; Vanya, M.; Jako, M.; Nagy, T.D.; Fidrich, M.; Bilicki, V.; Borbas, J.; Bito, T.; et al. Monitoring of Fetal Heart Rate via iPhone. eHealth 360∘ 2017, 492–496. [Google Scholar] [CrossRef]
- Durand, L.G.; Pibarot, P. Digital signal processing of the phonocardiogram: Review of the most recent advancements. Crit. Rev. Biomed. Eng. 1995, 23, 3–4. [Google Scholar] [CrossRef]
- Webster, J.G. Medical Devices and Instrumentation; Wiley-Interscience: Hoboken, NJ, USA, 1988. [Google Scholar]
- Phanphaisarn, W.; Roeksabutr, A.; Wardkein, P.; Koseeyaporn, J.; Yupapin, P.P. Heart detection and diagnosis based on Ecg and EPcg relationships. Med. Devices 2011, 4. [Google Scholar] [CrossRef]
- Southern, E.M. Electrocardiography and phonocardiography of the foetal heart. BJOG Int. J. Obstet. Gynaecol. 1954, 61, 231–237. [Google Scholar] [CrossRef]
- Fendinger, N.J. Polydimethylsiloxane (PDMS): Environmental Fate and Effects. Organosilicon Chem. Set 2005, 626–638. [Google Scholar] [CrossRef]
- Todd, M.D.; Seaver, M.; Bucholtz, F. Improved, operationally-passive interferometric demodulation method using 3×3 coupler. Electron. Lett. 2002, 38, 784–786. [Google Scholar] [CrossRef]
- Vinay, K.; Proakis, J.G. Digital Signal Processing Using MATLAB: A Problem Solving Companion. Cengage Learn. 2016, 4, 1. [Google Scholar]
- Brandstetter, P.; Klein, L. Second Order Low-Pass and High-Pass Filter Designs using Method of Synthetic Immittance Elements. Adv. Electr. Electron. Eng. 2013, 11, 16–21. [Google Scholar]
- Donghui, Z. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 September 2005; pp. 1212–1215. [Google Scholar]
- Shusterman, V.; Shah, S.I.; Beigel, A.; Anderson, K.P. Enhancing the Precision of ECG Baseline Correction: Selective Filtering and Removal of Residual Error. Comput. Biomed. Res. 2000, 33, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Haykin, S. Adaptive Filter Theory; Pearson Education India: New Delhi, India, 2008. [Google Scholar]
- Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Uncini, A. Fundamentals of Adaptive Signal Processing; Springer International Publishing AG: Cham, Switzerland, 2015. [Google Scholar]
- Farhang-Boroujeny, B. Adaptive Filters: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zelniker, G.; Taylor, F.J. Advanced Digital Signal Processing: Theory and Applications (Electrical and Computer Engineering); John Wiley & Sons: CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Nagel, J.H. Progresses in Fetal Monitoring by Improved Data Acquisition. IEEE Eng. Med. Biol. Mag. 1984, 3, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Mittra, A.; Choudhary, N.; Zadgaonkar, A. Development of artificial womb foracoustical simulation of mother’s abdomen. Int. J. Biomed. Eng. Technol. 2008, 1. [Google Scholar] [CrossRef]
- Carvalho, M.A.; Bernardes, L.S.; Hettfleisch, K.; Pastro, L.D.M.; Vieira, S.E.; Saldiva, S.R.D.M.; Saldiva, P.H.N.; Francisco, R.P.V. Associations of maternal personal exposure to air pollution on fetal weight and fetoplacental Doppler: A prospective cohort study. Reprod. Toxicol. 2016, 62, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Nagel, J.H. New diagnostic and technical aspects of fetal phonocardiography. Eur. J. Obstet. Gynecol. Reprod. Biol. 1986, 23, 295–303. [Google Scholar] [CrossRef]
- Jezewski, J.; Wrobel, J.; Horoba, K.; Gacek, A.; Sikora, J. Fetal heart rate variability: Clinical experts versus computerized system interpretation. Eng. Med. Biol. 2002, 2, 1617–1618. [Google Scholar]
- Jezewski, J.; Wrobel, J.; Horoba, K.; Gacek, A.; Sikora, J. Computerised perinatal database for retrospective qualitative assessment of cardiotocographic traces. Curr. Perspect. Healthc. Comput. 1996, 187–196. [Google Scholar]
- Janusz, J.; Wrobel, J.; Horoba, K. Comparison of Doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart rate variability. IEEE Trans. Biomed. Eng. 2006, 53, 855–864. [Google Scholar]
- Janusz, J.; Matonia, A.; Kupka, T.; Roj, D.; Czabanski, R. Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Tech./Biomed. Eng. 2012, 57, 383–394. [Google Scholar]
- Chetlur Adithya, P.; Sankar, R.; Moreno, W.A.; Hart, S. Trends in fetal monitoring through phonocardiography: Challenges and future directions. Biomed. Signal Process. Control 2017, 33, 289–305. [Google Scholar] [CrossRef]
- Towliat, M.B.; Jabbari, S. Implementation of compressed sensing for fPCG signal compression: Design and performance evaluation. In Proceedings of the 24th Iranian Conference Electrical Engineering (ICEE), Shiraz, Iran, 10–12 May 2016; pp. 395–399. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Roriz, P.; Carvalho, L.; Frazao, O.; Santos, J.L.; Simoes, J.A. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review. J. Biol. 2014, 47, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Baldini, F.; Giannetti, A.; Mencaglia, A.A.; Trono, C. Fiber Optic sensors for Biomedical Applications. Curr. Anal. Chem. 2008, 4, 378–390. [Google Scholar] [CrossRef]
- Massaroni, C.; Saccomandi, P.; Schena, E. Medical smart textiles based on fiber optic technology: An overview. J. Funct. Biomater. 2015, 6, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, J.; Chourasia, V.; Mittra, A.K. Prenatal identification of CHD murmur using four segment phonocardiographic signal analysis. J. Med. Eng. Technol. 2017, 41. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.; Charleston, S.; Miguel, P.; Tomas, A.; Roco, O. Performance of the Hilbert Transform in fetal phonocaridography for cardiotacogram generation. In Proceedings of the 21 St Annual Conference of IEEE BMES/EMBS, Atlanta, GA, USA, 13–16 October 1999. [Google Scholar]
- Copel, J.A.; Pilu, G.; Green, J.; Hobbins, J.C.; Kleinman, C.S. Fetal echocardiographic screening for congenital heart disease: The importance of the four-chamber view. Am. J. Obstet. Gynecol. 1987, 157, 648–655. [Google Scholar] [CrossRef]
- Varady, P. Wavelet based adaptive denoising of phonocardiographic records. In Proceedings of the 23rd Annual IEEE EMBS Conference, Istanbul, Istanbul, Turkey, 25–28 October 2001. [Google Scholar]
- Kosa, E.; Horvath, Cs.; Kersner, N.; Kadar, K.; Kovacs, F.; Torok, M.; Hosszu, G. Experiences with fetal phonocardiographic telemonitoring and future possibilities. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vancouver, BC, Canada, 20–25 August 2008. [Google Scholar]
- Samieinasab, M.; Sameni, R. Fetal phonocardiogram extraction using single channel blind source separation. In Proceedings of the ICEE 2015—Proceedings of the 23rd Iranian Conference on Electrical Engineering, Sharif, Iran, 10–14 May 2015; 10, pp. 78–83. [Google Scholar]
- Balogh, A.; Kovacs, F.; Roska, T. Analysis of the Heart Sounds and Murmurs of Fetuses and Preterm Infant. Ph.D. Thesis, Pazmany Peter Katolikus Egyetem, Budapest, Hungary, 2012. [Google Scholar]
- Zahoriana, S.A.; Zuckerwar, A.J.; Karnjanadecha, M. Dual transmission modeland related spectral content of the fetal heart sounds. Comput. Methods Prog. Biomed 2012, 8, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Cubik, J.; Kepak, S.; Doricak, J.; Vasinek, V.; Jaros, J.; Liner, A.; Papes, M.; Fajkus, M. The Usability Analysis of Different Standard Single-Mode Optical Fibers and its Installation Methods for the Interferometric Measurements. Adv. Electr. Electron. Eng. 2013, 11, 535–542. [Google Scholar] [CrossRef]
- Nedoma, J.; Fajkus, M.; Martinek, R.; Bednarek, L.; Zabka, S.; Hruby, D.; Jaros, J.; Vasinek, V. Impact of fixing materials on the frequency range and sensitivity of the fiber-optic interferometer. Proc. SPIE 2017, in press. [Google Scholar]
- Nedoma, J.; Fajkus, M.; Martinek, R.; Zboril, O.; Bednarek, L.; Novak, M.; Witas, K.; Vasinek, V. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations. Proc. SPIE 2017, in press. [Google Scholar]
- Kepak, S.; Cubik, J.; Doricak, J.; Vasinek, V.; Siska, P.; Liner, A.; Papes, M. The arms arrangement influence on the sensitivity of Mach–Zehnder fiber optic interferometer. Proc. SPIE 2013, 8774. [Google Scholar] [CrossRef]
- Cubik, J.; Kepak, S.; Fajkus, M.; Zboril, O.; Nedoma, J.; Davidson, A.; Vasinek, V. Fixing methods for the use of optical fibers in interferometric arrangements. Proc. SPIE 2016, 10142. [Google Scholar] [CrossRef]
- Nigam, V.; Priemer, R. Online non invasive fetal sound analysis. In Proceedings of the Electro/Information Technology Conference, Milwaukee, WI, USA, 26–27 August 2004. [Google Scholar]
- MacDonnell, J.T.E. Knowledge-based interpretation of foetal phonocardiographic signals. IEE Proc. Part F Commun. Radar Signal Proc. 1990, 137, 311–318. [Google Scholar] [CrossRef]
- Kettler, A.; Liakos, L.; Haegele, B.; Wilke, H.J. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur. Spine J. 2007, 16, 2186–2192. [Google Scholar] [CrossRef] [PubMed]
- Lobodzinski, S.S.; Laks, M.M. New devices for very long-term ECG monitoring. Cardiol. J. 2012, 19, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Lobodzinski, S.S. ECG patch monitors for assessment of cardiac rhythm abnormalities. Prog. Cardiovasc. Dis. 2013, 56, 139–144. [Google Scholar] [CrossRef] [PubMed]
Method | Technical Specification | Gestational Age (GA) | Pros and Cons |
---|---|---|---|
CTG | 2 transducers—measurement of fHR and uterine activity | ≥20 weeks | − Ultrasound radiation − No information about BTB variability + Smooth HR in a time line + Rather robust and reliable + Measures uterine contractions + Cheap |
fMCG | Detection of fetal magnetic field SQUID Sensors placed near maternal abdomen | ≥20 weeks | − Expensive − Needs trained staff − Easy morphological analysis due to higher SNR |
NI-fECG | Standard ECG electrodes | ≥20 weeks with DIP from 28th to 37th week | + Quite accurate + Safe + Easy to use + Continuous monitoring of fHR + future possibility of morphology of low SNR − Susceptible to technical artifacts (e.g., network noises) |
−9.1497 | 1.8467 | 0.0289 | 95.7145 | 98.5401 |
−3.6984 | 2.1514 | 0.0317 | 96.4967 | 98.5417 |
−5.9841 | 3.4791 | 0.0497 | 97.1574 | 98.6053 |
−4.1385 | 0.2001 | 0.0304 | 91.5781 | 97.9471 |
−6.4717 | −2.7197 | 0.0241 | 87.7339 | 96.5812 |
−4.2581 | 2.0964 | 0.0301 | 96.1987 | 98.3271 |
−7.5717 | 2.9417 | 0.0431 | 96.7417 | 98.5981 |
−8.1741 | 2.0114 | 0.0291 | 96.2852 | 98.4179 |
−3.1741 | 3.1314 | 0.0478 | 96.9517 | 98.3271 |
−10.3947 | −0.3971 | 0.0209 | 89.4719 | 96.9547 |
−9.1497 | 1.5414 | 0.0234 | 97.8714 | 98.8475 |
−3.6984 | 1.9771 | 0.0287 | 97.0167 | 98.1394 |
−5.9841 | 3.2419 | 0.0432 | 98.8471 | 98.8417 |
−4.1385 | 0.2141 | 0.0217 | 95.6717 | 98.6614 |
−6.4717 | 0.0187 | 0.0281 | 95.1423 | 97.7491 |
−4.2581 | 1.8874 | 0.0279 | 97.5140 | 98.3405 |
−7.5717 | 2.5173 | 0.0407 | 98.3524 | 98.6477 |
−8.1741 | 1.7491 | 0.0259 | 98.1415 | 98.3069 |
−3.1741 | 2.6524 | 0.0427 | 97.9146 | 98.7421 |
−10.3947 | 0.0350 | 0.0185 | 95.0297 | 97.8140 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinek, R.; Nedoma, J.; Fajkus, M.; Kahankova, R.; Konecny, J.; Janku, P.; Kepak, S.; Bilik, P.; Nazeran, H. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring. Sensors 2017, 17, 890. https://doi.org/10.3390/s17040890
Martinek R, Nedoma J, Fajkus M, Kahankova R, Konecny J, Janku P, Kepak S, Bilik P, Nazeran H. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring. Sensors. 2017; 17(4):890. https://doi.org/10.3390/s17040890
Chicago/Turabian StyleMartinek, Radek, Jan Nedoma, Marcel Fajkus, Radana Kahankova, Jaromir Konecny, Petr Janku, Stanislav Kepak, Petr Bilik, and Homer Nazeran. 2017. "A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring" Sensors 17, no. 4: 890. https://doi.org/10.3390/s17040890
APA StyleMartinek, R., Nedoma, J., Fajkus, M., Kahankova, R., Konecny, J., Janku, P., Kepak, S., Bilik, P., & Nazeran, H. (2017). A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring. Sensors, 17(4), 890. https://doi.org/10.3390/s17040890