Proton Radiation Effects on Dark Signal Distribution of PPD CMOS Image Sensors: Both TID and DDD Effects
<p>Experimental setup for the CIS proton radiation test: (<b>a</b>) schematic diagram of the experiment; and (<b>b</b>) photo of the irradiation chamber.</p> "> Figure 2
<p>3-D surface plot of dark images from CIS (#1) After 3 MeV proton radiation (integration time: 61.56 ms): (<b>a</b>) before radiation; (<b>b</b>) proton fluence: 1 × 10<sup>10</sup> p/cm<sup>2</sup>; (<b>c</b>) proton fluence: 5 × 10<sup>10</sup> p/cm<sup>2</sup>; and (<b>d</b>) proton fluence: 1 × 10<sup>11</sup> p/cm<sup>2</sup>.</p> "> Figure 3
<p>3-D surface plot of dark images from CIS (#1) After 10 MeV proton radiation (integration time: 61.56 ms): (<b>a</b>) before radiation; (<b>b</b>) proton fluence: 1 × 10<sup>10</sup> p/cm<sup>2</sup>; (<b>c</b>) proton fluence: 5 × 10<sup>10</sup> p/cm<sup>2</sup>; and (<b>d</b>) proton fluence: 1 × 10<sup>11</sup> p/cm<sup>2</sup>.</p> "> Figure 4
<p>Mean dark signal versus proton fluence at different integration time: (<b>a</b>) proton energy: 3 MeV; and (<b>b</b>) proton energy: 10 MeV.</p> "> Figure 5
<p>DSNU versus proton fluence at different integration time: (<b>a</b>) proton energy: 3 MeV; and (<b>b</b>) proton energy: 10 MeV.</p> "> Figure 6
<p>Dark signal distributions of CISs after proton irradiation: (<b>a</b>) proton energy: 3 MeV; and (<b>b</b>) proton energy: 10 MeV.</p> "> Figure 7
<p>Main defects leading to dark current increase after proton radiation.</p> "> Figure 8
<p>Dark signal distribution of the CIS after gamma radiation.</p> "> Figure 9
<p>Mean dark signal and DSNU of CIS verse TID: (<b>a</b>) mean dark signal; and (<b>b</b>) DSNU.</p> "> Figure 10
<p>Experimental (point) and calculated (lines) distributions for CISs after proton radiation: (<b>a</b>) 3 MeV; and (<b>b</b>) 10 MeV.</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Experimental Results
4. Theoretical Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, D.; Song, M.; Choe, B.; Kim, S.Y. A multi-resolution mode CMOS image sensor with a novel two-step single-slope ADC for intelligent surveillance systems. Sensors 2017, 17, 1497. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Park, S.W.; Kang, M.G. Denoising algorithm for CFA image sensors considering inter-channel correlation. Sensors 2017, 17, 1236. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.T.; Hwang, S.J.; Lee, H.H. Finite element analysis of film stack architecture for complementary metal-oxide-semiconductor image sensors. Sensors 2017, 17, 1004. [Google Scholar] [CrossRef] [PubMed]
- Beaumel, M.; Herve, D.; Aken, D.V. Cobalt-60, proton and electron irradiation of a radiation-hardened active pixel sensor. IEEE Trans. Nucl. Sci. 2010, 57, 2056–2065. [Google Scholar] [CrossRef]
- Inguimbert, C.; Nuns, T.; Ursule, M.C.; Falguere, D.; Herve, D.; Beaumel, M.; Poizat, M. Modeling the dark current non-uniformity of image sensors with GEANT4. IEEE Trans. Nucl. Sci. 2014, 61, 3323–3330. [Google Scholar] [CrossRef]
- Raine, M.; Goiffon, V.; Girard, S.; Rousseau, A.; Gaillardin, M.; Paillet, P.; Duhamel, O.; Virmontois, C. Modeling approach for the prediction of transient and permanent degradations of image sensors in complex radiation environments. IEEE Trans. Nucl. Sci. 2013, 60, 4297–4304. [Google Scholar] [CrossRef] [Green Version]
- Gilard, O.; Boutillier, M.; Quadri, G.; Rolland, G.; Germanicus, R. New Approach for the prediction of CCD dark current distribution in a space radiation environment. IEEE Trans. Nucl. Sci. 2008, 55, 3626–3632. [Google Scholar] [CrossRef]
- Zheng, R.; Hui, X.L.; Wang, J.; Zhao, R.G.; Wei, X.M.; Hu, Y.C. Methods for predicting dark-current distribution of CMOS image sensor in radiation environment. In Proceedings of the 2016IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 5–8 August 2010; pp. 1–5. [Google Scholar]
- Virmontois, C.; Goiffon, V.; Corbiere, F.; Magnan, P.; Girard, S.; Bardoux, A. Displacement damage effects in pinned photodiode CMOS image sensors. IEEE Trans. Nucl. Sci. 2012, 59, 2872–2877. [Google Scholar] [CrossRef] [Green Version]
- Virmontois, C.; Toulemont, A.; Rolland, G.; Materne, A.; Lalucaa, V.; Goiffon, V.; Codreanu, C.; Durnez, C.; Bardoux, A. Radiation-induced dose and single event effects in digital CMOS image sensors. IEEE Trans. Nucl. Sci. 2014, 61, 3331–3340. [Google Scholar] [CrossRef]
- Belloir, J.M.; Goiffon, V.; Virmontois, C.; Raine, M.; Paillet, P.; Duhamel, O.; Gaillardin, M.; Molina, R.; Magnan, P.; Gilard, O. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors. Opt. Express 2016, 24, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Xue, Y.Y.; Jing, L.; Chen, W.; Ma, W.Y.; He, B.P.; Yao, Z.B.; Sheng, J.K. Analysis of image lag degradation in PPD CISs induced by total ionizing dose and displacement radiation damage. In Proceedings of the 2017 Radiation Effects on Components and System, Geneva, Switzerland, 2–6 October 2017. [Google Scholar]
- Wang, Z.J.; Huang, S.Y.; Liu, M.B.; Xiao, Z.G.; He, B.P.; Yao, Z.B.; Sheng, J.K. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from nuclear reactor. AIP Adv. 2014, 4, 077108. [Google Scholar] [CrossRef]
- Wang, Z.J.; Ma, W.Y.; Jing, L.; Xue, Y.Y.; He, B.P.; Yao, Z.B.; Huang, S.Y.; Liu, M.B.; Sheng, J.K. Degradation of annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates. Nucl. Instrum. Methods A 2016, 820, 89–94. [Google Scholar] [CrossRef]
- Virmontois, C.; Goiffon, V.; Magnan, P.; Girard, S.; Saint-Pe, O.; Rolland, G; Bardoux, A. Similarities between proton and neutron induced dark current distribution in CMOS image sensors. IEEE Trans. Nucl. Sci. 2012, 59, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4-a simulation toolkit. Nucl. Instrum. Methods A 2013, 506, 270–278. [Google Scholar] [CrossRef]
- Virmontois, C.; Goiffon, V.; Magnan, P.; Girard, S.; Inguimbert, C.; Petit, S.; Rolland, G.; Saint-Pe, O. Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology. IEEE Trans. Nucl. Sci. 2010, 57, 3101–3108. [Google Scholar] [CrossRef] [Green Version]
CIS Number | Bias Condition | Proton Energy (MeV) | Proton Flux (p/cm2/s) | Proton Fluence (1010p/cm2) |
---|---|---|---|---|
1# | Unbiased | 3 | 3.75 × 107 | 1,5,10 |
2# | Unbiased | 10 | 1,5,10 |
Proton Energy (MeV) | Proton Fluence (1010p/cm2) | TID (krad(Si)) | Effective Interactions per Pixel |
---|---|---|---|
3 | 1 | 23.5 | 0.24 |
3 | 5 | 117.5 | 1.2 |
3 | 10 | 235.0 | 2.4 |
10 | 1 | 9.6 | 0.1 |
10 | 5 | 47.9 | 0.5 |
10 | 10 | 95.8 | 1.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Wang, Z.; Chen, W.; Liu, M.; He, B.; Yao, Z.; Sheng, J.; Ma, W.; Dong, G.; Jin, J. Proton Radiation Effects on Dark Signal Distribution of PPD CMOS Image Sensors: Both TID and DDD Effects. Sensors 2017, 17, 2781. https://doi.org/10.3390/s17122781
Xue Y, Wang Z, Chen W, Liu M, He B, Yao Z, Sheng J, Ma W, Dong G, Jin J. Proton Radiation Effects on Dark Signal Distribution of PPD CMOS Image Sensors: Both TID and DDD Effects. Sensors. 2017; 17(12):2781. https://doi.org/10.3390/s17122781
Chicago/Turabian StyleXue, Yuanyuan, Zujun Wang, Wei Chen, Minbo Liu, Baoping He, Zhibin Yao, Jiangkun Sheng, Wuying Ma, Guantao Dong, and Junshan Jin. 2017. "Proton Radiation Effects on Dark Signal Distribution of PPD CMOS Image Sensors: Both TID and DDD Effects" Sensors 17, no. 12: 2781. https://doi.org/10.3390/s17122781