Arrhythmia Evaluation in Wearable ECG Devices
<p>The BC1 electrocardiogram (ECG) device: (<b>a</b>) Front and back views; (<b>b</b>) Processing, transmitting and saving units detail; and, (<b>c</b>) Position with the electrodes.</p> "> Figure 2
<p>Integrated arrhythmia evaluation flowchart; (<b>A</b>) Ventricular premature complex detection; (<b>B</b>) Atrial fibrillation detection; (<b>C</b>) Atrial premature complex detection; (<b>D</b>) Ventricular fibrillation detection.</p> "> Figure 3
<p>Artificial neural network (ANN) structure for detecting normal or abnormal beat in APC detection algorithm.</p> "> Figure 4
<p>Simulation result from Fluke simulator displayed on mobile phone; (<b>a</b>) Normal sinus rhythm; (<b>b</b>) Atrial Premature Complex (APC); (<b>c</b>) Ventricular Premature Complex (VPC); (<b>d</b>) Atrial fibrillation; and, (<b>e</b>) Ventricular fibrillation.</p> "> Figure 5
<p>Documented simulation results from Fluke simulator; (<b>a</b>) Normal sinus rhythm; (<b>b</b>) Atrial Premature Complex (APC); (<b>c</b>) Ventricular Premature Complex (VPC); (<b>d</b>) Atrial fibrillation and (<b>e</b>) Ventricular fibrillation.</p> "> Figure 6
<p>The misclassified VF rhythm to a VPC beat.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shany, T.; Redmond, S.J.; Narayanan, M.R.; Lovell, N.H. Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sens. J. 2012, 12, 658–670. [Google Scholar] [CrossRef]
- Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbishley, P.; Rodríguez-Villegas, E. Breathing detection: Towards a miniaturized, wearable, battery-operated monitoring system. IEEE Trans. Biomed. Eng. 2008, 55, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.W.; Huang, Y.S.; Chien, J.C.; Shieh, J.S. Short-term analysis of heart rate variability for emotion recognition via a wearable ECG device. In Proceedings of the IEEE International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 28–30 November 2015; pp. 262–265. [Google Scholar]
- Rosenberg, M.A.; Samuel, M.; Thosani, A.; Zimetbaum, P.J. Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: A pilot study. Pacing Clin. Electrophysiol. 2013, 36, 328–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baig, M.M.; Gholamhosseini, H.; Connolly, M.J. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 2013, 51, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Fensli, R.; Gunnarson, E.; Gundersen, T. A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, Dublin, Ireland, 23–24 June 2005; pp. 407–412. [Google Scholar]
- Lin, C.T.; Chang, K.C.; Lin, C.L.; Chiang, C.C.; Lu, S.W.; Chang, S.S.; Lin, B.S.; Liang, H.Y.; Chen, R.J.; Lee, Y.T.; et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 726–733. [Google Scholar] [PubMed]
- Hu, S.; Wei, H.; Chen, Y.; Tan, J. A real-time cardiac arrhythmia classification system with wearable sensor networks. Sensors 2012, 12, 12844–12869. [Google Scholar] [CrossRef] [PubMed]
- Hadiyoso, S.; Usman, K.; Rizal, A. Arrhythmia detection based on ECG signal using Android mobile for athlete and patient. In Proceedings of the IEEE 3rd International Conference on Information and Communication Technology (ICoICT), Nusa Dua, Bali, 27–29 May 2015; pp. 166–171. [Google Scholar]
- Fuster, V.; Rydén, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Le Heuzey, J.Y.; Kay, G.N.; Lowe, J.E.; et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation) Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Eur. Heart J. 2006, 27, 1979–2030. [Google Scholar] [PubMed]
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Kara, S.; Okandan, M. Atrial fibrillation classification with artificial neural networks. Pattern Recognit. 2007, 40, 2967–2973. [Google Scholar] [CrossRef]
- Roonizi, E.K.; Sassi, R. Dominant atrial fibrillatory frequency estimation using an extended Kalman smoother. In Proceedings of the Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 989–992. [Google Scholar]
- Mohebbi, M.; Ghassemian, H. Detection of atrial fibrillation episodes using SVM. In Proceedings of the EMBS 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 177–180. [Google Scholar]
- Abdul-Kadir, N.A.; Safri, N.M.; Othman, M.A. Dynamic ECG features for atrial fibrillation recognition. Comput. Methods Progr. Biomed. 2016, 136, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Hannun, A.Y.; Haghpanahi, M.; Bourn, C.; Ng, A.Y. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. arXiv, 2017; arXiv:1707.01836. [Google Scholar]
- McWilliam, J.A. Cardiac failure and sudden death. Br. Med. J. 1889, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Weaver, W.D.; Copass, M.K.; Bufi, D.; Ray, R.; Hallstrom, A.P.; Cobb, L.A. Improved neurologic recovery and survival after early defibrillation. Circulation 1984, 69, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Atienza, F.; Rojo-Álvarez, J.L.; Rosado-Muñoz, A.; Vinagre, J.J.; García-Alberola, A.; Camps-Valls, G. Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection. Expert Syst. Appl. 2012, 39, 1956–1967. [Google Scholar] [CrossRef]
- Anas, E.M.A.; Lee, S.Y.; Hasan, M.K. Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Comput. Biol. Med. 2011, 41, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Thong, T.; McNames, J.; Aboy, M.; Goldstein, B. Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes. IEEE Trans. Biomed. Eng. 2004, 51, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, O.; Shamsollahi, M.B.; Clifford, G.D. Robust detection of premature ventricular contractions using a wave-based Bayesian framework. IEEE Trans. Biomed. Eng. 2010, 57, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Özbay, Y.; Ceylan, R.; Karlik, B. A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 2006, 36, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Song, M.H.; Lee, J.; Cho, S.P.; Lee, K.J.; Yoo, S.K. Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 2005, 3, 571. [Google Scholar]
- Zhou, X.; Ding, H.; Wu, W.; Zhang, Y. A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate. PLoS ONE 2015, 10, e0136544. [Google Scholar] [CrossRef] [PubMed]
- Gowid, S.; Dixon, R.; Ghani, S. Performance Comparison Between Fast Fourier Transform-Based Segmentation, Feature Selection, and Fault Identification Algorithm and Neural Network for the Condition Monitoring of Centrifugal Equipment. J. Dyn. Syst. Meas. Control 2017, 139, 061013. [Google Scholar] [CrossRef]
- Bucci, O.M.; Migliore, M.D. A Novel Nonuniform Fast Fourier Transform Algorithm and Its Application to Aperiodic Arrays. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1472–1475. [Google Scholar] [CrossRef]
- Glowacz, A. Recognition of Acoustic Signals of Loaded Synchronous Motor Using FFT, MSAF-5 and LSVM. Arch. Acoust. 2015, 40, 197–203. [Google Scholar] [CrossRef]
- Kotus, J. Multiple sound sources localization in free field using acoustic vector sensor. Multimedia Tools Appl. 2015, 74, 4235–4251. [Google Scholar] [CrossRef] [PubMed]
- Clayton, R.H.; Murray, A. Estimation of the ECG signal spectrum during ventricular fibrillation using the fast Fourier transform and maximum entropy methods. In Proceedings of the IEEE Computers in Cardiology, London, UK, 5–8 September 1993; pp. 867–870. [Google Scholar]
- Afonso, V.X.; Tompkins, W.J. Detecting ventricular fibrillation. IEEE Eng. Med. Biol. Mag. 1995, 14, 152–159. [Google Scholar] [CrossRef]
- Analog Devices. Single-Lead, Heart Rate Monitor Front End. AD8232 Datasheet. 2012. Available online: http://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf (accessed on 30 September 2017).
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. Physiobank, physiotoolkit, and physionet. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Nolle, F.M.; Badura, F.K.; Catlett, J.M.; Bowser, R.W.; Sketch, M.H. CREI-GARD, a new concept in computerized arrhythmia monitoring systems. Comput. Cardiol. 1986, 13, 515–518. [Google Scholar]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Muldrow, W.; Mark, R.G. A noise stress test for arrhythmia detectors. Comput. Cardiol. 1984, 11, 381–384. [Google Scholar]
- Association for the Advancement of Medical Instrumentation. Testing and Reporting Performance Results of Cardiac Rhythm and st Segment Measurement Algorithms; ANSI/AAMI EC57; Association for the Advancement of Medical Instrumentation: Arlington, VA, USA, 2012. [Google Scholar]
- Hamilton, P.S.; Tompkins, W.J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 1986, 12, 1157–1165. [Google Scholar] [CrossRef]
- Hamilton, P.S. Open Source ECG Analysis Software Documentation; EP Limited: Somerville, MA, USA, 2002. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Lin, C.H.; Chien, J.C.; Haraikawa, K.; Huang, Y.S.; Guo, H.W.; Shieh, J.S. A modular integrating algorithm for multiple arrhythmia detection. In Proceedings of the IEEE International Conference on Communication Problem-Solving (ICCP), Taipei, Taiwan, 7–9 September 2016; pp. 1–2. [Google Scholar]
- Lo, M.T.; Lin, L.Y.; Hsieh, W.H.; Ko, P.C.I.; Liu, Y.B.; Lin, C.; Chang, Y.C.; Wang, C.Y.; Young, V.H.W.; Chiang, W.C.; et al. A new method to estimate the amplitude spectrum analysis of ventricular fibrillation during cardiopulmonary resuscitation. Resuscitation 2013, 84, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- De Chazal, P.; O’Dwyer, M.; Reilly, R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 2004, 51, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Young, B.; Brodnick, D.; Spaulding, R. A comparative study of a hidden Markov model detector for atrial fibrillation. In Proceedings of the IEEE Signal Processing Society Workshop Neural Networks for Signal Processing IX, Madison, WI, USA, 23–25 August 1999; pp. 468–476. [Google Scholar]
- Park, S.B.; Yoon, H.R. Development and Evaluation of an Improved Algorithm for Detection of Ventricular Fibrillation. In World Congress on Medical Physics and Biomedical Engineering 2006; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1174–1177. [Google Scholar]
- Moraes, J.C.T.B.; Blechner, M.; Vilani, F.N.; Costa, E.V. Ventricular fibrillation detection using a leakage/complexity measure method. In Proceedings of the IEEE Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002; pp. 213–216. [Google Scholar]
- Chakroborty, S.; Patil, M.A. Real-time arrhythmia classification for large databases. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 1448–1451. [Google Scholar]
- Logan, B.; Healey, J. Robust detection of atrial fibrillation for a long term telemonitoring system. In Proceedings of the IEEE Computers in Cardiology, Lyon, France, 25–28 September 2005; pp. 619–622. [Google Scholar]
- Hoffmann, K.P.; Ruff, R. Flexible dry surface-electrodes for ECG long-term monitoring. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 5739–5742. [Google Scholar]
- Abdoli-Eramaki, M.; Damecour, C.; Christenson, J.; Stevenson, J. The effect of perspiration on the sEMG amplitude and power spectrum. J. Electromyogr. Kinesiol. 2012, 22, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.; Burke, M.J. Measurement of the electrical properties of ungelled ECG electrodes. Int. J. Biol. Biomed. Eng. 2008, 2, 89–97. [Google Scholar]
- Gargiulo, G.D.; Bifulco, P.; Cesarelli, M.; Fratini, A.; Romano, M. Problems in assessment of novel biopotential front-end with dry electrode: A brief review. Machines 2014, 2, 87–98. [Google Scholar] [CrossRef]
- Winter, B.B.; Webster, J.G. Reductionl of interference due to common mode voltage in biopotential amplifiers. IEEE Trans. Biomed. Eng. 1983, 1, 58–62. [Google Scholar] [CrossRef]
- Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef] [PubMed]
CMRR (Common-mode rejection ratio) | 80 dB (dc to 60 Hz) |
High signal gain | (G = 100) with dc blocking capabilities |
Single-supply operation | 2.0 V to 3.5 V |
ADC (Analog-to-Digital Converter) | 12-bit |
Input Impedance | 5 Giga Ohm |
Database | Statistics | SVEB | VEB | ||||
---|---|---|---|---|---|---|---|
Se | +P | FPR | Se | +P | FPR | ||
AHADB * | Gross | N/A | N/A | N/A | 89.75 | 96.08 | 0.371 |
Average | N/A | N/A | N/A | 86.52 | 84.67 | 0.458 | |
MITDB ** | Gross | 79.87 | 67.14 | 1.323 | 93.10 | 95.65 | 0.321 |
Average | 71.35 | 36.9 | 2.098 | 87.27 | 73.26 | 0.336 | |
NSTDB | Gross | N/A | N/A | N/A | 83.22 | 45.79 | 10.180 |
Average | N/A | N/A | N/A | 58.17 | 50.86 | 9.032 |
Database | Statistics | AF | VF | ||||||
---|---|---|---|---|---|---|---|---|---|
ESe | E + P | DSe | D + P | ESe | E + P | DSe | D + P | ||
AHADB * | Gross | N/A | N/A | N/A | N/A | 90 | 95 | 28 | 97 |
Average | N/A | N/A | N/A | N/A | 94 | 69 | 33 | 70 | |
MITDB ** | Gross | 62 | 100 | 92 | 92 | 100 | 75 | 69 | 88 |
Average | 70 | 100 | 85 | 86 | 100 | 33 | 69 | 33 | |
CUDB | Gross | N/A | N/A | N/A | N/A | 83 | 90 | 32 | 94 |
Average | N/A | N/A | N/A | N/A | 84 | 83 | 40 | 84 |
Sensitivity (%) | Positive Predictivity (%) | False Positive Rate (%) | ||||
---|---|---|---|---|---|---|
This Study | De Chazal et al. [44] | This Study | De Chazal et al. [44] | This Study | De Chazal et al. [44] | |
SVEB | 79.87 | 75.9 | 67.14 | 38.5 | 1.323 | 4.7 |
VEB | 93.1 | 77.7 | 95.65 | 81.9 | 0.321 | 1.2 |
Arrhythmia | Studies | Database | Number of Data | Evaluation | |||||
---|---|---|---|---|---|---|---|---|---|
Gross Statistics | Se | +P | |||||||
ESe | E + P | DSe | D + P | ||||||
Atrial Fibrillation | Proposed study | MITDB | 44 | 62 | 100 | 92 | 92 | N/A | N/A |
Young et al. [45] | 12 | N/A | N/A | N/A | N/A | 97.7 | 86.77 | ||
Ventricular Fibrillation | Proposed study | AHADB | 78 | 90 | 95 | 28 | 97 | N/A | N/A |
Park et al. [46] | 11 | N/A | N/A | 98.1 | 99.1 | N/A | N/A | ||
Proposed study | MITDB | 44 | 100 | 75 | 69 | 88 | N/A | N/A | |
Park et al. [46] | 1 | N/A | N/A | 88.5 | 86.3 | N/A | N/A | ||
Proposed study | CUDB | 35 | 83 | 90 | 32 | 94 | N/A | N/A | |
Moraes et al. [47] | 30 | N/A | N/A | N/A | N/A | 70.32 | 64.66 |
Record | Smartphone (s) | PC (s) | Record | Smartphone (s) | PC (s) |
---|---|---|---|---|---|
100 | 40.975 | 3.638 | 203 | 41.699 | 3.891 |
101 | 40.964 | 3.508 | 205 | 43.084 | 4.167 |
103 | 41.256 | 3.653 | 207 | 42.842 | 3.625 |
105 | 41.337 | 4.747 | 208 | 43.104 | 4.454 |
106 | 41.028 | 4.404 | 209 | 43.124 | 4.075 |
108 | 40.916 | 3.194 | 210 | 41.366 | 3.780 |
109 | 41.146 | 3.400 | 212 | 42.986 | 3.794 |
111 | 41.131 | 3.077 | 213 | 43.163 | 4.284 |
112 | 41.239 | 2.716 | 214 | 42.557 | 3.266 |
113 | 40.822 | 2.623 | 215 | 43.226 | 3.502 |
114 | 41.064 | 2.716 | 219 | 41.539 | 2.901 |
115 | 40.980 | 2.361 | 220 | 42.468 | 2.883 |
116 | 41.361 | 2.909 | 221 | 41.376 | 2.924 |
117 | 40.698 | 2.404 | 222 | 42.292 | 3.393 |
118 | 41.143 | 4.853 | 223 | 42.831 | 3.643 |
119 | 41.020 | 2.702 | 228 | 42.581 | 4.730 |
121 | 41.003 | 2.942 | 230 | 42.579 | 3.656 |
122 | 41.278 | 3.073 | 231 | 42.252 | 3.605 |
123 | 40.672 | 2.799 | 232 | 41.961 | 3.719 |
124 | 41.001 | 3.200 | 233 | 44.042 | 5.681 |
200 | 40.861 | 4.761 | 234 | 43.96 | 5.239 |
201 | 41.831 | 3.406 | Sum | 1840.791 | 158.013 |
202 | 42.033 | 3.718 | Mean | 41.836 | 3.591 |
STD | 0.942 | 0.771 |
Study | Arrhythmia | Device Evaluation Time (S) | |
---|---|---|---|
Smartphone | PC | ||
Proposed study | Normal, APC, VPC, AF, VF | 1840.791 | 158.013 |
Chakroborty et al. [48] | Normal, APC, VPC, LBBB, RBBB | N/A | 6875.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadrawi, M.; Lin, C.-H.; Lin, Y.-T.; Hsieh, Y.; Kuo, C.-C.; Chien, J.C.; Haraikawa, K.; Abbod, M.F.; Shieh, J.-S. Arrhythmia Evaluation in Wearable ECG Devices. Sensors 2017, 17, 2445. https://doi.org/10.3390/s17112445
Sadrawi M, Lin C-H, Lin Y-T, Hsieh Y, Kuo C-C, Chien JC, Haraikawa K, Abbod MF, Shieh J-S. Arrhythmia Evaluation in Wearable ECG Devices. Sensors. 2017; 17(11):2445. https://doi.org/10.3390/s17112445
Chicago/Turabian StyleSadrawi, Muammar, Chien-Hung Lin, Yin-Tsong Lin, Yita Hsieh, Chia-Chun Kuo, Jen Chien Chien, Koichi Haraikawa, Maysam F. Abbod, and Jiann-Shing Shieh. 2017. "Arrhythmia Evaluation in Wearable ECG Devices" Sensors 17, no. 11: 2445. https://doi.org/10.3390/s17112445
APA StyleSadrawi, M., Lin, C. -H., Lin, Y. -T., Hsieh, Y., Kuo, C. -C., Chien, J. C., Haraikawa, K., Abbod, M. F., & Shieh, J. -S. (2017). Arrhythmia Evaluation in Wearable ECG Devices. Sensors, 17(11), 2445. https://doi.org/10.3390/s17112445