SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements
<p>(<bold>a</bold>) Typical GNSS/cGNSS-R receiver block diagram; (<bold>b</bold>) Simplified iGNSS-R receiver block diagram.</p> "> Figure 2
<p>(<bold>a</bold>) Conventional non-coherent integration scheme; (<bold>b</bold>) General non-coherent integration definition.</p> "> Figure 3
<p>Simulations SNR for the TDS-1 scenario and cGNSS-R: (<bold>a</bold>) Minimum received power on ground of −158.5 dBW; (<bold>b</bold>) Minimum received power on ground of −153 dBW. Legend indicates u<inline-formula> <mml:math id="mm175" display="block"> <mml:semantics> <mml:msub> <mml:mrow/> <mml:mn>10</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> wind speed.</p> "> Figure 4
<p>Simulations of the normalized peak variability for the TDS-1 scenario and cGNSS-R: (<bold>a</bold>) Minimum received power on ground of −158.5 dBW; (<bold>b</bold>) Minimum received power on ground of −153 dBW. Legend indicates u<inline-formula> <mml:math id="mm176" display="block"> <mml:semantics> <mml:msub> <mml:mrow/> <mml:mn>10</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> wind speed.</p> "> Figure 5
<p>Simulations SNR for the GEROS-ISS scenario and cGNSS-R: (<bold>a</bold>) Minimum received power on ground of −158.5 dBW; (<bold>b</bold>) Minimum received power on ground of −153 dBW. Legend indicates u<inline-formula> <mml:math id="mm179" display="block"> <mml:semantics> <mml:msub> <mml:mrow/> <mml:mn>10</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> wind speed.</p> "> Figure 6
<p>Simulations of the normalized peak variability for the GEROS-ISS scenario and cGNSS-R: (<bold>a</bold>) Minimum received power on ground of −158.5 dBW; (<bold>b</bold>) Minimum received power on ground of −153 dBW. Legend indicates u<inline-formula> <mml:math id="mm180" display="block"> <mml:semantics> <mml:msub> <mml:mrow/> <mml:mn>10</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> wind speed.</p> "> Figure 7
<p>Simulations SNR for the GEROS-ISS scenario and iGNSS-R: (<bold>a</bold>) Total EIRP of 28.64 dBW (pessimistic); (<bold>b</bold>) Total EIRP of 34.23 dBW (optimistic). Legend indicates u<inline-formula> <mml:math id="mm185" display="block"> <mml:semantics> <mml:msub> <mml:mrow/> <mml:mn>10</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> wind speed.</p> "> Figure 8
<p>Simulations of the normalized peak variability for the GEROS-ISS scenario and iGNSS-R: (<bold>a</bold>) Total EIRP of 28.64 dBW (pessimistic); (<bold>b</bold>) EIRP of 34.23 dBW (optimistic). Legend indicates u<inline-formula> <mml:math id="mm186" display="block"> <mml:semantics> <mml:msub> <mml:mrow/> <mml:mn>10</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> wind speed.</p> ">
Abstract
:1. Introduction
2. Signal Model
2.1. cGNSS-R
2.2. iGNSS-R
3. Correlation Peak Statistics in GNSS and Squaring Loss Paradox
4. Correlation Peak SNR in cGNSS-R and iGNSS-R
5. Effect of Non-Coherent Summations in the Detectability Criteria
6. Correlation Peak Variability
7. Estimation of the SNR and Signal’s Peak Variability for the UK TDS-1 and GEROS-ISS Missions
7.1. cGNSS-R
7.1.1. UK TDS-1 Scenario
7.1.2. GEROS-ISS Scenario
7.2. iGNSS-R
GEROS-ISS Scenario
8. Discussion
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACF | Auto-Correlation Function |
cGNSS-R | conventional GNSS-R |
DDM | Delay-Doppler Map |
EIRP | Equivalent Isotropically Radiated Power |
GEROS-ISS | GNSS REflectometry, Radio Occultation and Scatterometry on board the ISS |
GNSS | Global Navigation Satellite Systems |
GNSS-R | GNSS-Reflectometry |
GPS | Global Positioning System |
ICD | Interface Control Document |
iGNSS-R | interferometric GNSS-R |
ISS | International Space Station |
KA | Kirchoff Approximation |
LOS | Line Of Sight |
MERRByS | Measurement of Earth Reflected Radio-navigation Signals By Satellite |
PARIS | PAssive Reflectometry and Interferometry System |
PO | Physical Optics |
PRN | Pseudo-Random Noise |
RF | Radio Frequency |
SNR | Signal-to-Noise Ratio |
UK | United Kingdom |
UK TDS-1 | UK TechDemoSat-1 |
Appendix A. Correlation Functions of the Different Terms
Appendix B. Fourth Order Correlation Functions
Appendix C. Detectability Criteria for the Different Cases
Appendix C.1. Derivation of dc
Appendix C.2. Derivation of
Appendix C.3. Derivation of di
Appendix C.4. Derivation of
Appendix D. Detectability Criteria for the Different Cases after Non Coherent Integration
Appendix D.1. Derivation of dnc
Appendix D.2. Derivation of
Appendix D.3. Derivation of dni
Appendix D.4. Derivation of
References
- Fischer, R. Standard Deviation of Scatterometer Measurements from Space. IEEE Trans. Geosci. Electron. 1972, 10, 106–113. [Google Scholar] [CrossRef]
- Goodman, J.W. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145. [Google Scholar] [CrossRef]
- Hall, C.; Cordey, R. Multistatic Scatterometry. In Proceedings of the Remote Sensing: Moving Toward the 21st Century, International Geoscience and Remote Sensing Symposium (IGARSS ’88), Edinburgh, UK, 12–16 September 1988; pp. 561–562.
- Martín-Neira, M. A passive reflectometry and interferometry system(PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Paris, J. Nakagami-q (Hoyt) distribution function with applications. Electron. Lett. 2009, 45, 210. [Google Scholar] [CrossRef]
- Zuffada, C.; Zavorotny, V. Coherence time and statistical properties of the GPS signal scattered off the ocean surface and their impact on the accuracy of remote sensing of sea surface topography and winds. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Australia, 9–13 July 2001; Volume 7, pp. 3332–3334.
- You, H.; Garrison, J.L.; Heckler, G.; Zavorotny, V.U. Stochastic voltage model and experimental measurement of ocean-scattered GPS signal statistics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2160–2169. [Google Scholar]
- You, H.; Garrison, J.; Heckler, G.; Smajlovic, D. The Autocorrelation of Waveforms Generated From Ocean-Scattered GPS Signals. IEEE Geosci. Remote Sens. Lett. 2006, 3, 78–82. [Google Scholar] [CrossRef]
- Martin-Neira, M.; D’Addio, S.; Buck, C.; Floury, N.; Prieto-Cerdeira, R. The PARIS Ocean Altimeter In-Orbit Demonstrator. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2209–2237. [Google Scholar] [CrossRef]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea Ice Detection Using UK TDS-1 data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016.
- Katzberg, S.J.; Garrison, J.L. Utilizing GPS to Determine Ionospheric Delay over the Ocean; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 1996.
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef]
- Fried, D.L. Statistics of the laser radar cross section of a randomly rough target. J. Opt. Soc. Am. 1976, 66, 1150–1160. [Google Scholar] [CrossRef]
- Zavorotny, V.; Voronovich, A. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef]
- Pascual, D.; Park, H.; Camps, A.; Arroyo, A.A.; Onrubia, R. Simulation and Analysis of GNSS-R Composite Waveforms Using GPS and Galileo Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1461–1468. [Google Scholar] [CrossRef]
- Woodward, P. Radar Ambiguity Analysis, Technical Note No. 731; Technical Report; Royal Radar Establishment: Malvern, UK, 1967. [Google Scholar]
- De Roo, R.; Ulaby, F. Bistatic specular scattering from rough dielectric surfaces. IEEE Trans. Antennas Propag. 1994, 42, 220–231. [Google Scholar] [CrossRef]
- De Roo, R.; Ulaby, F. A modified physical optics model of the rough surface reflection coefficient. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Baltimore, MD, USA, 21–26 July 1996; Volume 3, pp. 1772–1775.
- Garrison, J.L. Modeling and simulation of bin-bin correlations in GNSS-R waveforms. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 7079–7081.
- Cardellach, E.; Rius, A.; Martin-Neira, M.; Fabra, F.; Nogues-Correig, O.; Ribo, S.; Kainulainen, J.; Camps, A.; D’Addio, S. Consolidating the Precision of Interferometric GNSS-R Ocean Altimetry Using Airborne Experimental Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4992–5004. [Google Scholar] [CrossRef]
- Martin, F.; DAddio, S.; Camps, A.; Martin-Neira, M. Modeling and Analysis of GNSS-R Waveforms Sample-to-Sample Correlation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1545–1559. [Google Scholar] [CrossRef]
- Martin, F.; Camps, A.; Park, H.; DaAddio, S.; Martin-Neira, M.; Pascual, D. Cross-Correlation Waveform Analysis for Conventional and Interferometric GNSS-R Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1560–1572. [Google Scholar] [CrossRef]
- Van Diggelen, F. A-GPS: Assisted GPS, GNSS, and SBAS, 1st ed.; Artech House: Norwood, MA, USA, 2009; pp. 171–225. [Google Scholar]
- Betz, J.; Kolodziejski, K. Generalized Theory of Code Tracking with an Early-Late Discriminator Part I: Lower Bound and Coherent Processing. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1538–1556. [Google Scholar] [CrossRef]
- Betz, J.; Kolodziejski, K. Generalized Theory of Code Tracking with an Early-Late Discriminator Part II: Noncoherent Processing and Numerical Results. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1557–1564. [Google Scholar] [CrossRef]
- Borio, D. A Statistical Theory for GNSS Signal Acquisition. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2008. [Google Scholar]
- Borio, D.; Akos, D. Noncoherent Integrations for GNSS Detection: Analysis and Comparisons. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 360–375. [Google Scholar] [CrossRef]
- Strassle, C.; Megnet, D.; Mathis, H.; Burgi, C. The Squaring-Loss Paradox. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX, USA, 25–28 September 2007; pp. 2715–2722.
- Lawson, J.L.; Ulhenbeck, G.E. Threshold Signals, 1st ed.; McGraw-Hill: New York, NY, USA, 1950. [Google Scholar]
- Lowe, S. Voltage Signal-to-Noise Ratio (SNR) Nonlinearity Resulting From Incoherent Summations (TMO 42-137); Technical Report; The Telecommunications and Mission Operations Progress Report: Pasadena, CA, USA, 1999. [Google Scholar]
- Thompson, A.R.; Moran, J.M.; Swenson, G.W., Jr. Interferometry and Synthesis in Radio Astronomy, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 336–346. [Google Scholar]
- Cardellach, E. Sea Surface Determination Using GNSS Reflected Signals. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2001. [Google Scholar]
- Camps, A.; Park, H.; Valencia i Domenech, E.; Pascual, D.; Martin, F.; Rius, A.; Ribo, S.; Benito, J.; Andres-Beivide, A.; Saameno, P.; et al. Optimization and Performance Analysis of Interferometric GNSS-R Altimeters: Application to the PARIS IoD Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1436–1451. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House Publishers: Boston, MA, USA, 1982; Volume 2, p. 608. [Google Scholar]
- Zuffada, C.; Elfouhaily, T.; Lowe, S. Sensitivity analysis of wind vector measurements from ocean reflected GPS signals. Remote Sens. Environ. 2003, 88, 341–350. [Google Scholar] [CrossRef]
- Martin, F.; Camps, A.; Fabra, F.; Rius, A.; Martin-Neira, M.; D’Addio, S.; Alonso, A. Mitigation of Direct Signal Cross-Talk and Study of the Coherent Component in GNSS-R. IEEE Geosci. Remote Sens. Lett. 2015, 12, 279–283. [Google Scholar] [CrossRef]
- Global positioning Systems Directorate. Global Positioning Systems Directorate System Engineering & Integration, Interface Specification (IS-GPS-200H); Technical Report; Global Positioning Systems Directorate: Washington, DC, USA, 2013. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 6th ed.; Cambridge University Press: Cambridge, UK, 1980; p. 508. [Google Scholar]
Sensor Parameter | Magnitude |
---|---|
Orbit Height | 635 [km] |
Ground speed | 6864 [m/s] |
Minimum Rx Power on Earth | −158.5 [dBW] |
Maximum Rx Power on Earth | −153 [dBW] |
Incidence angle | 15° |
Frequency Band | L1 (C/A Code) |
Sea Water Dielectric Constant | 72.6 + j58.5 |
Down-Looking Antenna Gain | 13 [dBiC] |
Noise Figure | 3.5 [dB] |
Sensor Parameter | Magnitude |
---|---|
Orbit Height | 400 [km] |
Ground speed | 7214 [m/s] |
Minimum Rx Power on Earth | −158.5 [dBW] |
Maximum Rx Power on Earth | −153 [dBW] |
Incidence angle | 15° |
Frequency Band | L1 (C/A Code) |
Sea Water Dielectric Constant | 72.6 + j58.5 |
Down-Looking Antenna Gain | 22 [dBiC] |
Noise Figure | 3.5 [dB] |
Sensor Parameter | Magnitude |
---|---|
EIRP C/A | 24 [dBW] |
EIRP M | 25.5 [dBW] |
EIRP P | 21 [dBW] |
EIRP Total | 28.64 [dBW] |
Orbit Height | 400 [km] |
Ground speed | 7214 [m/s] |
Incidence angle | 15° |
Frequency Band | L1 (Composite) |
Sea Water Dielectric Constant | 72.6 + j58.5 |
Up-Looking Antenna Gain | 22 [dBiC] |
Down-Looking Antenna Gain | 22 [dBiC] |
Noise Figure | 3.5 [dB] |
Bandwidth | 40 [MHz] |
Sensor Parameter | Magnitude |
---|---|
EIRP C/A | 29.5 [dBW] |
EIRP M | 31 [dBW] |
EIRP P | 27 [dBW] |
EIRP Total | 34.23 [dBW] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Arroyo, A.; Querol, J.; Lopez-Martinez, C.; Zavorotny, V.U.; Park, H.; Pascual, D.; Onrubia, R.; Camps, A. SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements. Sensors 2017, 17, 183. https://doi.org/10.3390/s17010183
Alonso-Arroyo A, Querol J, Lopez-Martinez C, Zavorotny VU, Park H, Pascual D, Onrubia R, Camps A. SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements. Sensors. 2017; 17(1):183. https://doi.org/10.3390/s17010183
Chicago/Turabian StyleAlonso-Arroyo, Alberto, Jorge Querol, Carlos Lopez-Martinez, Valery U. Zavorotny, Hyuk Park, Daniel Pascual, Raul Onrubia, and Adriano Camps. 2017. "SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements" Sensors 17, no. 1: 183. https://doi.org/10.3390/s17010183