Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents
<p>Assembly for citrus fruit image acquisition.</p> "> Figure 2
<p>Combination of citrus fruit image acquisition.</p> "> Figure 3
<p>Segments of citrus fruit foreground for the calculation of standard deviation, (<b>a1</b>) is a normal color image (VIS); (<b>b1</b>) is the corresponding NIR image of (<b>a1</b>); (<b>c1</b>) is a neutral density attenuated image (NEUT); (<b>d1</b>) is the corresponding NIR image of (<b>c1</b>); (<b>e1</b>) is a linear polarizer-attenuated image (POLA); (<b>f1</b>) is the corresponding NIR image of (<b>e1</b>); (<b>a2</b>–<b>f2</b>) are the corresponding segmented images around the fruit area of the image from the first row respectively.</p> "> Figure 4
<p>Scheme of fusion approach using RGB and NIR components.</p> "> Figure 5
<p>Fusion on color and near infrared images with DWT.</p> "> Figure 6
<p>Entropy filter of RGB citrus fruit color image, (<b>a</b>) VIS color image; (<b>b</b>) Entropy filter of R component in level 3 of DWT; (<b>c</b>) Entropy filter of G component in level 3 of DWT; (<b>d</b>) Entropy filter of B component in level 3 of DWT.</p> "> Figure 7
<p>Modification of the original RGB color image with the corresponding NIR image using the proposed fusion approach.</p> "> Figure 8
<p>Fusion of two aligned images using RGB components with fusion rule.</p> "> Figure 9
<p>Example of validation, (<b>a1</b>) is normal color image (VIS); (<b>b1</b>) is scaled modified color image of (<b>a1</b>); (<b>a2</b>) is neutral density attenuated color image (NEUT); (<b>b2</b>) is modified color image of (<b>a2</b>); (<b>a3</b>) is linear polarizer attenuated color image (POLA); (<b>b3</b>) is modified color image of (<b>a3</b>); (<b>c1</b>–<b>c3</b>) are the results by ‘R-B’ for images (<b>a1</b>–<b>a3</b>); Respectively (<b>d1</b>–<b>d3</b>) are the results by ‘2R-G-B’; (<b>e1</b>–<b>e3</b>) are the results by PCA using R, G, and B; (<b>f1</b>–<b>f3</b>) are the results by PCA using R, G, B, and NIR component; (<b>g1</b>–<b>g3</b>) are the results by FLDA; (<b>h1</b>–<b>h3</b>) are the results by the nonlinear fusion method.</p> "> Figure 10
<p><span class="html-italic">F</span> measure for citrus fruit cluster image by different methods.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition with a Registered Bi-Camera System
2.2. Nonlinear Fusion of Two Images Using Discrete Wavelet Transform
2.3. Clustering Fused Image with C-Means Algorithm
3. Evaluation and Results Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schertz, C.E.; Brown, G.K. Basic considerations in mechanizing citrus harvest. Trans. ASAE 1968, 11, 343–346. [Google Scholar]
- Jimenez, A.R.; Ceres, R.; Pons, J.L. A Survey of Computer Vision Methods for Locating Fruit on Trees. Trans. ASAE 2000, 43, 1911–1920. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Harrell, R.C. Color vision in robotic fruit harvesting. Am. Soc. Agric. Eng. 1987, 30, 1144–1148. [Google Scholar] [CrossRef]
- Kane, K.E.; Lee, W.S. Spectral Sensing of Different Citrus Varieties for Precision Agriculture; ASABE Paper No. 061065; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2006. [Google Scholar]
- Okamoto, H.; Lee, W.S. Green citrus detection using hyperspectral imaging. Comput. Electron. Agric. 2009, 66, 201–208. [Google Scholar] [CrossRef]
- Edan, Y. Design of an autonomous agricultural robot. Appl. Intell. 1995, 5, 41–50. [Google Scholar] [CrossRef]
- Rabatel, G. A Vision System for Magali, the Fruit Picking Robot, in Agricultural Engineering; Paper 88293; AGENG88: Paris, France, 1988. [Google Scholar]
- Kane, K.E.; Lee, W.S. Multispectral Imaging for In-Field Green Citrus Identification; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2007. [Google Scholar]
- Aleixos, N.; Blasco, J.; Navarrón, F.; Moltó, E. Multispectral Inspection of Citrus in Real-time Using Machine Vision and Digital Signal. Comput. Electron. Agric. 2002, 33, 121–137. [Google Scholar] [CrossRef]
- Lu, R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Rostharvest Biol. Technol. 2004, 31, 147–157. [Google Scholar] [CrossRef]
- Bulanon, D.M.; Burks, T.F.; Alchanatis, V. Image fusion of visible and thermal images for fruit detection. Biosyst. Eng. 2009, 103, 12–22. [Google Scholar] [CrossRef]
- Acquah, G.E.; Via, B.K.; Billor, N.; Fasina, O.O.; Eckhardt, L.G. Identifying Plant Part Composition of Forest Logging Residue Using Infrared Spectral Data and Linear Discriminant Analysis. Sensors 2016, 16, 1375. [Google Scholar] [CrossRef] [PubMed]
- Blum, R.S.; Liu, Z. Multi-Sensor Image Fusion and Its Applications; CRC Press & Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wyawahare, M.V.; Patil, D.P.M.; Abhyankar, H.K. Image Registration Techniques: An Overview. Intern. J. Signal Process. Image Process. Pattern Recognit. 2009, 2, 11–28. [Google Scholar]
- Kise, M.; Park, B.; Lawrence, K.C.; Windham, W.R. Design and calibration of a dual-band imaging system. Sens. Instrum. Food Qual. 2007, 1, 113–121. [Google Scholar] [CrossRef]
- Kise, M.; Park, B.; Heitschmidt, G.W.; Lawrence, K.C.; Windham, W.R. Multispectral imaging system with interchangeable filter design. Comput. Electron. Agric. 2010, 72, 61–68. [Google Scholar] [CrossRef]
- Li, P.; Lee, S.-H.; Hsu, H.-Y. Use of a Cold Mirror System for Citrus Fruit Identification. In Proceedings of the IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011.
- Piella, G. A general framework for multiresolution image fusion: from pixels to regions. Inf. Fusion 2003, 4, 259–280. [Google Scholar] [CrossRef]
- Zhang, Y.; He, M. 3D Wavelet Transform and Its Application in Multispectral and Hyperspectral Image Fusion. In Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009.
- Kittler, J.; Hatef, M.; Duin, R.P.W.; Matas, J. On Combining Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 226–239. [Google Scholar] [CrossRef]
- Jimenez, L.O.; Morales-Morell, A.; Creus, A. Classification of Hyperdimensional Data Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority Voting, and Neural Networks. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1360–1366. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, L.; Huang, Y.; Liu, C. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion. Sensors 2016, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.C.; Lin, M.-H. Robot Multi-Sensor Fusion and Integration: Optimum Estimation of Fused Sensor Data. In Proceedings of the 1988 IEEE conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988.
- Luo, R.C.; Kay, M.G. Multisensor Integration and Fusion in Intelligent Systems. IEEE Trans. Syst. Man Cybern. 1989, 19, 901–931. [Google Scholar] [CrossRef]
- Li, P.; Lee, S.-H.; Hsu, H.-Y. Study on citrus fruit image data separability by segmentation methods. In Proceedings of the 2011 International Conference on Power Electronics and Engineering Application, Shenzhen, China, 27 October 2011.
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Meyer, Y. Wavelets Algorithms & Applications; SIAM: Philadelphia, PA, USA, 1993. [Google Scholar]
- Van Fleet, P.J. Discrete Wavelet Transformations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Linde, Y.; Buzo, A.; Gray, R.M. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1980, COM-28, 84–95. [Google Scholar] [CrossRef]
- Selim, S.Z.; Ismail, M.A. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Trans. Patterns Anal. Mach. Intell. 1984, PAMI-6, 81–87. [Google Scholar] [CrossRef]
- Manning, C.D.; Raghavan, P.; Schutze, H. An Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Xu, H.; Ying, Y. Citrus fruit recognition using color image analysis. In Proceedings of the Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, Philadelphia, PA, USA, 25 October 2004; pp. 321–328.
- Du, K.-L.; Swamy, M.N.S. Neural Networks in a Softcomputing Framework; Springer: London, UK, 2006. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
Types of Color Image | VIS | NEUT | POLA | ||||||
---|---|---|---|---|---|---|---|---|---|
Components of RGB color space | Red | Green | Blue | Red | Green | Blue | Red | Green | Blue |
STD of citrus foreground in color | 0.1454 | 0.1625 | 0.2037 | 0.2440 | 0.2494 | 0.1338 | 0.2632 | 0.2397 | 0.1034 |
Intensity of NIR for Color Image | Intensity of NIR with VIS | Intensity of NIR with NEUT | Intensity of NIR with POLA |
---|---|---|---|
STD of citrus foreground in NIR | 0.1336 | 0.1275 | 0.1306 |
F Measure by Methods (α = 0.98–0.99) | |||
---|---|---|---|
Methods | VIS | NEUT | POLA |
R-B | 0.3723 | 0.7318 | 0.8062 |
2R-G-B | 0.5363 | 0.8365 | 0.8785 |
PCA using R, G, and B | 0.1179 | 0.3115 | 0.4765 |
PCA using R, G, B, and NIR | 0.1179 | 0.3107 | 0.4049 |
R-B in DWT | 0.1793 | 0.4918 | 0.6104 |
2R-G-B in DWT | 0.1824 | 0.4797 | 0.6143 |
PCA using R, G, and B in DWT | 0.1303 | 0.3853 | 0.5349 |
PCA using R, G, B, and NIR in DWT | 0.1303 | 0.3854 | 0.5350 |
FLDA | 0.5881 | 0.8715 | 0.9009 |
Proposed nonlinear fusion method | 0.8753 | 0.9147 | 0.9099 |
Methods | (R-B)/(2R-G-B) | PCA Using (R, G, B)/(R, G, B, NIR) | (R-B)/(2R-G-B) in DWT | PCA Using (R, G, B)/(R, G, B, NIR) in DWT | FLDA | Proposed Nonlinear Fusion Approach |
---|---|---|---|---|---|---|
Identification (%) | 0.877 | 0.864 | 0.890 | 0.882 | 0.917 | 0.882 |
Methods | R-B | 2R-G-B | PCA Using R, G, B | PCA Using R, G, B, NIR | FLDA | Proposed Nonlinear Fusion Approach |
---|---|---|---|---|---|---|
Processing time | 0.29 | 0.28 | 0.63 | 0.67 | 1.27 | 10.13 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Lee, S.-H.; Hsu, H.-Y.; Park, J.-S. Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents. Sensors 2017, 17, 142. https://doi.org/10.3390/s17010142
Li P, Lee S-H, Hsu H-Y, Park J-S. Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents. Sensors. 2017; 17(1):142. https://doi.org/10.3390/s17010142
Chicago/Turabian StyleLi, Peilin, Sang-Heon Lee, Hung-Yao Hsu, and Jae-Sam Park. 2017. "Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents" Sensors 17, no. 1: 142. https://doi.org/10.3390/s17010142
APA StyleLi, P., Lee, S. -H., Hsu, H. -Y., & Park, J. -S. (2017). Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents. Sensors, 17(1), 142. https://doi.org/10.3390/s17010142