Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection
<p>Motivation for the background classification and coastal region detection for sea-based infrared search and track: different types of small infrared target detection methods should be applied depending on the background to maximize the detection rate and to minimize the false alarm rate.</p> "> Figure 2
<p>Comparison of spatial filter-based infrared target detection for different types of background: (<b>a</b>) sky-sea; (<b>b</b>) coast region. The yellow squares represent the detected target regions.</p> "> Figure 3
<p>Proposed infrared scene interpretation system.</p> "> Figure 4
<p>Proposed infrared scene interpretation system.</p> "> Figure 5
<p>Example of the prepared test DB for a quantitative inspection.</p> "> Figure 6
<p>Distribution of the thermal average intensity and standard deviation for each region.</p> "> Figure 7
<p>Distributions of the gray level co-occurrence matrix (GLCM)-based thermal texture for each region: (<b>a</b>) contrast <span class="html-italic">vs.</span> correlation; (<b>b</b>) contrast <span class="html-italic">vs.</span> homogeneity; (<b>c</b>) contrast <span class="html-italic">vs.</span> entropy; (<b>d</b>) correlation <span class="html-italic">vs.</span> homogeneity; (<b>e</b>) correlation <span class="html-italic">vs.</span> entropy; (<b>f</b>) homogeneity <span class="html-italic">vs.</span> entropy.</p> "> Figure 8
<p>Horizon observation of the sea-based infrared images and background types: (<b>a</b>) normal sky-sea; (<b>b</b>) remote coast; (<b>c</b>) near coast background.</p> "> Figure 9
<p>Proposed infrared scene classification method using the horizon and clutter density cues.</p> "> Figure 10
<p>Estimation of the horizon in image (<math display="inline"> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>g</mi> </mrow> </msub> </math>) using the projection method in the near coast region: (<b>a</b>) edge map-based measurement; (<b>b</b>) line map-based measurement.</p> "> Figure 11
<p>Examples of scene classification using the proposed background type classification.</p> "> Figure 12
<p>Limitations of the previous region segmentation approaches: (<b>a</b>) normalized graph cut (N-cut) with three prior regions; (<b>b</b>) mean-shift segmentation; (<b>c</b>) prior rectangle for snake; (<b>d</b>) after energy minimization in the snake algorithm.</p> "> Figure 13
<p>Proposed coast region detection flow given in the scene type information.</p> "> Figure 14
<p>Region map extraction using K-means clustering and small region removal.</p> "> Figure 15
<p>Results of the region map extraction: (<b>a</b>) test image; (<b>b</b>) original K-means clustering; (<b>c</b>) final region map.</p> "> Figure 16
<p>Curve map extraction using Canny edge detection, edge linking and short curve removal.</p> "> Figure 17
<p>Results of curve map extraction: (<b>a</b>) test image; (<b>b</b>) initial raw edge map by Canny edge detector; (<b>c</b>) contour extraction with a gap size of 2; (<b>d</b>) final curve map by removing the short curves.</p> "> Figure 18
<p>Fused map and coast boundary map generation flow using the selected region map and curve map: (<b>a</b>) selected region map using horizon information; (<b>b</b>) extracted curve map; (<b>c</b>) fused map generation by applying an AND operation to the selected region and curve map; (<b>d</b>) coast boundary representation.</p> "> Figure 19
<p>Region map selection flow using the geometric horizon and clutter density.</p> "> Figure 20
<p>Composition of the infrared database.</p> "> Figure 21
<p>Examples of successful infrared scene type classification.</p> "> Figure 22
<p>The effects of the parameter K in the K-means segmentation: (<b>a</b>) test image; (<b>b</b>) K = 3; (<b>c</b>) K = 5; (<b>d</b>) K = 7; (<b>e</b>) K = 9; and (<b>f</b>) K = 12.</p> "> Figure 23
<p>Comparison of the coastal region detection results for Test Set 1: (<b>a</b>) proposed coastal region detection; (<b>b</b>) mean-shift segmentation-based method [<a href="#B28-sensors-15-24487" class="html-bibr">28</a>]: Scene 1 was successful; Scenes 2 and 3 failed (segmentation results were displayed as partial outputs.) [<a href="#B28-sensors-15-24487" class="html-bibr">28</a>]; (<b>c</b>) statistical region merging method [<a href="#B35-sensors-15-24487" class="html-bibr">35</a>].</p> "> Figure 24
<p>Comparison of the coastal region detection results for Test Set 2: (<b>a</b>) proposed coastal region detection; (<b>b</b>) mean-shift segmentation [<a href="#B28-sensors-15-24487" class="html-bibr">28</a>]: it failed for these test scenes; (<b>c</b>) statistical region merging method [<a href="#B35-sensors-15-24487" class="html-bibr">35</a>].</p> "> Figure 25
<p>Generation of synthetic test images by inserting a 3D CAD model into the coast background image [<a href="#B36-sensors-15-24487" class="html-bibr">36</a>]: (<b>a</b>) 3D CAD model of a missile; (<b>b</b>) generated infrared image with the target motion.</p> "> Figure 26
<p>Effect of the coast region information in the infrared small target detection problem for the synthetic DB: (<b>a</b>) application of the temporal filter-based detector (TCF) for the identified coast region; (<b>b</b>) application of a spatial filter-based detector (top-hat). The yellow circles denote the ground truths, and the red rectangles represent the detection results.</p> "> Figure 27
<p>Final footprint of target detection using a temporal filter (TCF) in the identified coastal region. The blue dots represent the detected target locations.</p> "> Figure 28
<p>Effect of the coast region information in the infrared small target detection problem for the real WIG craft DB: (<b>a</b>) application of the temporal filter-based detector (TCF) for the identified coast region; (<b>b</b>) application of spatial filter-based detector (top-hat). The yellow circles denote the ground truths, and the red rectangles represent the detection results.</p> "> Figure 29
<p>Examples of a failure case: (<b>a</b>) dense cloud clutter around horizon and sky; (<b>b</b>) extracted region map; (<b>c</b>) extracted edge map; (<b>d</b>) coast detection using the proposed method.</p> ">
Abstract
:1. Introduction
2. Proposed Infrared Scene Interpretation System
2.1. Properties of the Sea-Based IRST Background
- The shapes of the sky, coast and sea regions are wide, because the imaging view point is slanted.
- The order of the background is predictable, such as sky-sea, sky-coast-sea and sky-coast. The reverse order is not permitted.
- A lower coast region generally occludes other remote regions due to the geometry of the camera projection.
2.2. Infrared Background Type Classification
2.3. Coastal Region Detection
3. Experimental Results
Dataset | Sky-Sea | Cluttered Remote Coast | Cluttered Near Coast | Accuracy (%) |
---|---|---|---|---|
Set 1 | 60/60 | 60/60 | 100/110 | 95.6% (220/230) |
Set 2 | 42/42 | 294/315 | 126/126 | 95.7% (463/484) |
Test scene | Proposed | Mean-Shift Segmentation [28] | Statistical Region Mergin [35] | |||
---|---|---|---|---|---|---|
DR [%] | DR [%] | DR [%] | ||||
Set 1:Scene 1 | 19/19 | 100% | 19/19 | 100% | 19/19 | 100% |
Set 1:Scene 2 | 19/19 | 100% | 2/19 | 10.5% | 19/19 | 100% |
Set 1:Scene 3 | 16/19 | 84.2% | 0/19 | 0% | 0/19 | 0% |
Set 2:Scene 1 | 17/17 | 100% | 2/17 | 11.8% | 0/19 | 0% |
Set 2:Scene 2 | 19/19 | 100% | 0/19 | 0% | 19/19 | 100% |
Set 2:Scene 3 | 18/19 | 94.7% | 16/19 | 84.2% | 17/19 | 89.4% |
Overall | 108/112 | 96.4% | 39/112 | 34.8% | 74/112 | 66.0% |
DB Types | Performance Measure | With Coast Information by the Proposed Method Temporal Filter (TCF [37]) | Without Coast Information Spatial Filter (Top-Hat [5]) |
---|---|---|---|
Synthetic | Detection rate | 97.7% (171/175) | 89.7% (157/175) |
DB | FAR | 0/image | 54/image |
WIGcraft | Detection rate | 98.3% (60/61) | 85.3% (52/61) |
DB | FAR | 0/image | 65/image |
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Jong, A.N. IRST and perspective. Proc. SPIE 1995, 2552, 206–213. [Google Scholar]
- Ristic, B.; Hernandez, M.; Farina, A.; Hwa-Tung, O. Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles. In Proceedings of the 9th International Conference on Information Fusion, Florence, Italy, 10–13 July 2006; pp. 1–8.
- Sang, H.; Shen, X.; Chen, C. Architecture of a configurable 2-D adaptive filter used for small object detection and digital image processing. Opt. Eng. 2003, 48, 2182–2189. [Google Scholar] [CrossRef]
- Warren, R.C. Detection of Distant Airborne Targets in Cluttered Backgrounds in Infrared Image Sequences. Ph.D. Thesis, University of South Australia, Adelaide, Australia, 2002. [Google Scholar]
- Wang, Y.L.; Dai, J.M.; Sun, X.G.; Wang, Q. An efficient method of small targets detection in low SNR. J. Phys. Conf. Ser. 2006, 48, 427–430. [Google Scholar] [CrossRef]
- Rozovskii, B.; Petrov, A. Optimal Nonlinear Filtering for Track-before-Detect in IR Image Sequences. Proc. SPIE 1999, 3809, 152–163. [Google Scholar]
- Thiam, E.; Shue, L.; Venkateswarlu, R. Adaptive Mean and Variance Filter for Detection of Dim Point-Like Targets. Proc. SPIE 2002, 4728, 492–502. [Google Scholar]
- Zhang, Z.; Cao, Z.; Zhang, T.; Yan, L. Real-time detecting system for infrared small target. Proc. SPIE 2007, 6786. [Google Scholar] [CrossRef]
- Kim, S.; Sun, S.G.; Kim, K.T. Highly efficient supersonic small infrared target detection using temporal contrast filter. Electron. Lett. 2014, 50, 81–83. [Google Scholar] [CrossRef]
- Sang, N.; Zhang, T.; Shi, W. Detection of Sea Surface Small Targets in Infrared Images based on Multi-level Filters. Proc. SPIE 1998, 3373, 123–129. [Google Scholar]
- Chan, D.S.K. A Unified Framework for IR Target Detection and Tracking. Proc. SPIE 1992, 1698, 66–76. [Google Scholar]
- Tzannes, A.P.; Brooks, D.H. Point Target Detection in IR Image Sequences: A Hypothesis-Testing Approach based on Target and Clutter Temporal Profile Modeling. Opt. Eng. 2000, 39, 2270–2278. [Google Scholar]
- Schwering, P.B.; van den Broek, S.P.; van Iersel, M. EO System Concepts in the Littoral. Proc. SPIE 2007, 6542. [Google Scholar] [CrossRef]
- Wong, W.-K.; Chew, Z.-Y.; Lim, H.-L.; Loo, C.-K.; Lim, W.-S. Omnidirectional Thermal Imaging Surveillance System Featuring Trespasser and Faint Detection. Int. J. Image Proc. 2011, 4, 518–538. [Google Scholar]
- Missirian, J.M.; Ducruet, L. IRST: A key system in modern warfare. Proc. SPIE 1997, 3061, 554–565. [Google Scholar]
- Grollet, C.; Klein, Y.; Megaides, V. ARTEMIS: Staring IRST for the FREMM frigate. Proc. SPIE 2007, 6542. [Google Scholar] [CrossRef]
- Fontanella, J.C.; Delacourt, D.; Klein, Y. ARTEMIS: First naval staring IRST in service. Proc. SPIE 2010, 7660. [Google Scholar] [CrossRef]
- Weihua, W.; Zhijun, L.; Jing, L.; Yan, H.; Zengping, C. A Real-time Target Detection Algorithm for Panorama Infrared Search and Track System. Procedia Eng. 2012, 29, 1201–1207. [Google Scholar] [CrossRef]
- Dijk, J.; van Eekeren, A.W.M.; Schutte, K.; de Lange, D.J.J. Point target detection using super-resolution reconstruction. Proc. SPIE 2007, 6566. [Google Scholar] [CrossRef]
- Kim, S. Min-local-LoG filter for detecting small targets in cluttered background. Electron. Lett. 2011, 47, 105–106. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track. Pattern Recognit. 2012, 45, 393–406. [Google Scholar] [CrossRef]
- Kim, S.; Sun, S.G.; Kwon, S.; Kim, K.T. Robust coastal region detection method using image segmentation and sensor LOS information for infrared search and track. Proc. SPIE 2013, 8744. [Google Scholar] [CrossRef]
- Blanton, W.B.; Barner, K.E. Infrared Region Classification using Texture and Model-based Features. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, USA, 31 March–4 April 2008; pp. 1329–1332.
- Kim, S.; Lee, J. Small Infrared Target Detection by Region-Adaptive Clutter Rejection for Sea-Based Infrared Search and Track. Sensors 2014, 2014, 13210–13242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Ye, W.; Wang, Q. An Improved Canny Algorithm for Edge Detection. J. Comput. Inf. Syst. 2011, 7, 1516–1523. [Google Scholar]
- Fernandes, L.; Oliveira, M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognit. 2007, 41, 299–314. [Google Scholar] [CrossRef]
- Richter, R.; Davis, J.S.; Duggin, M.J. Radiometric sensor performance model including atmospheric and IR clutter effects. Proc. SPIE 1997, 3062. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar]
- Xu, C.; Prince, J.L. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans. Image Proc. 1998, 7, 359–369. [Google Scholar]
- Yao, H.; Duan, Q.; Li, D.; Wang, J. An improved K-means clustering algorithm for fish image segmentation. Math. Comput. Model. 2013, 58, 790–798. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing, 3rd ed.; Prentice Hall: Saddle River, NJ, USA, 2008. [Google Scholar]
- Klein, L.A. Sensor and Data Fusion Concepts and Applications, 2nd ed.; SPIE Press: Bellingham, WA, USA, 1999. [Google Scholar]
- Mikolajczyk, K.; Tuytelaars, T.; Schmid, C.; Zisserman, A.; Matas, J.; Schaffalitzky, F.; Kadir, T.; Gool, L.V. A Comparison of Affine Region Detectors. Int. J. Comput. Vis. 2005, 65, 43–72. [Google Scholar] [CrossRef]
- Nock, R.; Nielsen, F. Statistical Region Merging. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yang, Y.; Choi, B. Realistic infrared sequence generation by physics-based infrared target modeling for infrared search and track. Opt. Eng. 2010, 49. [Google Scholar] [CrossRef]
- Kim, S. High-speed incoming infrared target detection by fusion of spatial and temporal detectors. Sensors 2015, 15, 7267–7293. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection. Sensors 2015, 15, 24487-24513. https://doi.org/10.3390/s150924487
Kim S. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection. Sensors. 2015; 15(9):24487-24513. https://doi.org/10.3390/s150924487
Chicago/Turabian StyleKim, Sungho. 2015. "Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection" Sensors 15, no. 9: 24487-24513. https://doi.org/10.3390/s150924487
APA StyleKim, S. (2015). Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection. Sensors, 15(9), 24487-24513. https://doi.org/10.3390/s150924487