Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring
"> Figure 1
<p>General schema.</p> "> Figure 2
<p>(<b>A</b>) Flowchart of the main.c application; (<b>B</b>) Flowchart of the graph.sh application.</p> "> Figure 3
<p>Image captured from the website corresponding to gravimeter measurements and battery control with the units of the depicted parameters in mV and V, respectively. A 10-day period is shown.</p> "> Figure 4
<p>Image captured from the website corresponding to the meteorological data of the gravimeter system. Top: the ambient and internal temperature; middle: the relative humidity and dew point; bottom: the pressure. A 10-day period is shown.</p> "> Figure 5
<p>Image captured from the website corresponding to the gravimeter configuration section and metadata. Left-hand side: the configuration data; right-hand side: information regarding the gravity meter system, battery, and meteorological data.</p> "> Figure 6
<p>Flowchart of the meteo.c application.</p> "> Figure 7
<p>Querying data from various stations in real time via the Telegram instant messaging application. First, the status of the stations is requested by the general command HELP and then the station to be accessed—in this case GRAJ—is specified. After receiving this command, the station will reply with the rest of the available commands supported by the station. In this example, the graph of gravity and humidity for the previous ten days has been requested.</p> "> Figure 8
<p>Flowchart of the timelapse.c application.</p> "> Figure 9
<p>Left-hand side: the system configuration; center: the most recent picture of Teide Volcano (Tenerife) taken from a distance of approximately 4 Km and a graph of the evolution of the battery; right-hand side: information about the system, as well as the option for downloading images using a calendar.</p> "> Figure 10
<p>Querying the seasons via the Telegram instant messaging software using a smartphone. The last picture taken by the CRAJI command is sent and the battery status is checked with CRAJB command requests.</p> "> Figure 11
<p>Location of the four different measuring systems.</p> "> Figure 12
<p>(<b>A</b>) Graph of the registered gravity and the trend curve; mV are plotted against days; (<b>B</b>) Graph of the adjustment of the line of the points obtained from the theoretical gravity (µgal) and experimentally obtained values (mV); (<b>C</b>) Graph of the gravity converted to µgal; (<b>D</b>) Detail of the previous graph in which the effect of a distant earthquake is registered.</p> "> Figure 13
<p>Fifteen days of data from the ITIG station on El Hierro. The upper graph represents the ground deformation observed for two perpendicular axes in µRad. The bottom graph shows the temperature in degrees Celsius.</p> "> Figure 14
<p>Comparison between a commercial system and the developed system. The upper picture depicts the evolution of the X-axis and a detail of the noise in both systems. The graph below is the same for the Y-axis.</p> "> Figure 15
<p>Ocean tide registered by a commercial acquisition system and by the system developed in this project over a period of thirty days. Top: the measurements obtained by the LogoSens datalogger (in red) and the measurements produced by the datalogger developed in this project (Rpi) (in blue). Bottom: the same signal over a period of 24 hours with a zoom showing the noise present in both systems.</p> "> Figure 16
<p>Imaging monitoring system.</p> ">
Abstract
:1. Introduction
Manufacturer | Model | Range | Resolution |
---|---|---|---|
LaCoste Romberg | G | 7000 mGal | 5 uGal |
Micro-g LaCoste | gPhoneX | 7000 mGal | 0.1 uGal |
ZLC Corporation | Burris | 7000 mGal | 1 uGal |
Scintrex | CG5 | 8000 mGal | 1uGal |
Manufacturer | Model | Type | Resolution |
---|---|---|---|
Jewell Instruments | LILY | Borehole | <0.01 µrad |
Sherborne Sensors | T235 | Platform | <0.1 µrad |
Singer Instruments | TS series | Platform | <0.1 µrad |
Altheris Sensors & Controls | AILSO series | Borehole | <0.1 µrad |
Manufacturer | Model | Type | Precision |
---|---|---|---|
Vega | VegaPuls 62 | Radar | ±2 mm |
Seba Hydrometrie | SebaPuls 30 | Radar | ±3 mm |
OTT Hydromet | OTT Thalimedes | Float | ±2 mm |
2. Low-Cost Acquisition System with Embedded Linux
Arduino Yun | BeagleBone Black | Banana Pi | Intel Galileo | Raspberry Pi B | |
---|---|---|---|---|---|
SoC | Atheros AR9331 | TI AM3358 | Allwinner A20 | Intel Quark X1000 | Broadcom BCM2835 |
CPU | MIPS32 24K and ATmega32U4 | ARM Cortex-A8 | ARM Cortex-A7 | Intel X1000 | ARM1176 |
RAM | 64 MB | 512 MB | 1 GB | 256 MB | 512 MB |
Interfaces | WiFi, USB, Ethernet, UART, SPI, I2C | USB, Ethernet, UART, SPI, I2C | USB, Ethernet, UART, SPI, I2C | USB, Ethernet, UART, SPI, I2C | USB, Ethernet, UART, SPI, I2C |
Camera Interface | No | Yes | Yes | No | Yes |
Video output | No | HDMI | HDMI/Comp | No | HDMI/Comp |
Power supply | 5 V | 5 V | 5 V | 5 V | 5 V |
Power consumption | 1.35 W | 1.6 W | 1.15 W | 2.5 W | 1.8 W |
Price | 67.36 € | 51.99 € | 43.23 € | 45.51 € | 20.67 € |
2.1. Hardware
Raspberry Pi Model B | |
---|---|
SoC | Broadcom BCM2835 (CPU,GPU,DSP,SDRAM,USB) |
CPU | ARM 1176JZF-S 700 MHz (ARM11) |
Instructions | RISC 32 bits |
SDRAM | 512 MiB |
USB 2.0 | 2 |
Video output | HDMI,RCA,DSI |
Storage | SD/MMC |
Network connectivity | 10/100 Ethernet |
Peripherals | GPIO,SPI,I2C,UART |
Power consumption | 200 mA @ 12V |
2.1.1. Gravity Measurement System
LaCoste & Romberg (Model G) | |
---|---|
Range | 7000 mGal |
Data Resolution | 0.005 mGal |
Accuracy | 0.04 mGal |
Repeatability | 0.01 to 0.02 mGal |
Drift | 1.0 mGal per month |
Length | 19.7 cm |
Width | 17.8 cm |
Height | 25.1 cm |
Weight | 3.2 Kg |
Weather Station | |
---|---|
Component | Description |
ATMEGA328 | Microcontroller |
BMP085 | Pressure and Temperature Sensor |
SHT75 | Humidity and Temperature Sensor |
Humidity Sensor | Pressure Sensor | |||
---|---|---|---|---|
Humidity | Temperature | Pressure | Temperature | |
Resolution | 12 bits | 14 bits | 0.01 hPa | 0.1 °C |
Accuracy | ±3%RH | ±0.3 °C | ±0.2 hPa | ±0.5 °C |
Linearity | ±0.1%RH | ±01 °C | -- | -- |
Range | 0%–100%RH | −4 to 123.8 °C | 300 to 1100 | −40 to 130 °C |
Offset | <0.5 *RH/year | <0.04 °C/year | ±1 hPa/year | -- |
2.1.2. Measurement System for Ground Deformation
701-2 Platform Tilt Meter | |
---|---|
Angular Range: low gain | ±8000 urad (±0.46°) |
Angular Range: high gain | ±800 urad (±0.046°) |
Scale Factor | 1 urad/mV |
Resolution | 0.1 urad |
Linearity | 2% of full span |
Tilt Output | ±8 V (single-ended) and ±16 V (differential) |
Temperature Output | 0.1 °C/mV (single-ended) and ±0.75 °C accuracy |
2.1.3. Tide Gauge Measurement System
SEBAPuls 30 | |
---|---|
Precision | ±3 mm |
Range | 0 to 35 m |
Output | 4 to 20 mA |
2.1.4. Monitoring System Using Images
Raspberry PI Camera Board | |
---|---|
Resolution | 5 MP |
Still Picture Resolution | 2592 × 1944 |
Video | 1080p @ 30fps, 720p @ 60fps and 640 × 480p 90fps |
Interface | 15-pin MIPI Camera Serial Interface |
Size | 20 × 25 × 9 mm |
2.2. Software
Software/Script | Execution Every |
---|---|
main.c | 1 min (default) |
graph.sh | 1 min |
synch.sh | 30 min |
meteo.c | continuously |
message.lua | continuously |
index.php | continuously |
Command | Type | Response | Station Responding |
---|---|---|---|
HELP | General | <station name> ONLINE | All |
<station name> | Specific | Lists the commands supported by the station | All |
CRAJI | Specific | Sends the last image captured | Camera CRAJ |
CRAJL | Specific | Sends a list of available time lapses | Camera CRAJ |
RGRAVV | Specific | Sends the graph for gravity | Gravimeter GRAJ |
RBAT | Specific | Sends the graph for batteries | Gravimeter GRAJ |
ITIGXY | Specific | Sends the graph for deformation | Tiltmeter ITIG |
IRIOXY | Specific | Sends the graph for deformation | Tiltmeter IRIO |
Software/Script | Execution Every |
---|---|
timelapse.c | 1 min (default) |
battery.c | 1 min |
bat_graph.sh | 1 min |
video.sh | Once every day |
synch.sh | 1 min |
buffer.sh | Once every day |
message.lua | Continuously |
index.php | Continuously |
3. Results and Discussion
3.1. Gravity Measurement System
3.2. Ground Deformation Measurement System
CR800 | RPI | |
---|---|---|
X axis | 0.15 µRad | 0.047 µRad |
Y axis | 0.20 µRad | 0.03 µRad |
3.3. Tide Gauge Measurement System
3.4. Imaging Monitoring System
4. Conclusions
Product | Description | Price |
---|---|---|
DT-85G (dataTaker) | 48 Analog I/O, 4 Digital I/O. RS232/485, ETH, USB MODBUS RTU/TCP | 4000 € |
DT-80 (dataTaker) | 15 Analog I/O, 12 Digital I/O. RS232/458, ETH, USB MODBUS | 3000 € |
R800 (Campbell Scientific) | 6 Analog I/O, 4 Digital I/O. RS232 | 1000 € |
Our datalogger | Raspberry Pi, Raspberry Pi Camera, A/D 16 bits, RTC, PCB Arduino UNO + Sensors | 156€ |
General-purpose volcano monitoring system (gravity, ground deformation, imaging monitoring) |
Low-cost volcano monitoring system (156 €) |
Simple maintenance service |
High-quality signal-to-noise ratio (gravity measurement noise is 1 mV or 0.2 uGal) |
Open system where all the software used is free |
Development of applications in an online environment |
Use of Linux working environment |
Good power performance (200 mA at 12 V) |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hooper, A.; Prata, F.; Sigmundsson, F. Remote sensing of volcanic hazards and their precursors. IEEE Proc. 2012, 100, 2098–2930. [Google Scholar] [CrossRef]
- Williams-Jones, G.; Rymer, H. Detecting volcanic eruption precursors: A new method using gravity and deformation measurements. J. Volcanol. Geother. Res. 2002, 113, 379–389. [Google Scholar] [CrossRef]
- McGuire, W.J. Monitoring active volcanoes: An introduction. In Monitoring Active Volcanoes: STRATEGIES, Procedures and Techniques, 1st ed.; McGuire, W., Kilburn, C.R.J., Murray, J., Eds.; Routledge: London, UK, 1995; pp. 1–21. [Google Scholar]
- Seidl, D.; Hellweg, M.; Calvache, M.; Gomez, D.; Ortega, A.; Torres, R.; Böker, F.; Buttkus, B.; Faber, E.; Greinwald, S. The multiparemeter station at Galeras Volcano (Colombia): Concept and realization. J. Volcanol. Geother. Res. 2003, 125, 1–12. [Google Scholar] [CrossRef]
- Fonseca, F.B.D.; Bruno, V.E.; Faria, N.P.L.; Heleno, S.I.N.; Lazaro, C.; d’Oreye, N.F.; Ferrerira, A.M.G.; Barros, I.J.M.; Santos, P.; Bandomo, Z.; et al. Multiparameter monitoring of Fogo Island, Cape Verde, for volcanic risk mitigation. J. Volcanol. Geother. Res. 2003, 125, 39–56. [Google Scholar] [CrossRef]
- Scarpa, R.; Gasparini, P. A review of volcano geophysics and volcano-monitoring methods. In Monitoring and Mitigation of Volcano Hazards; Springer-Verlag: Berlin, Geramny, 1996; pp. 3–22. [Google Scholar]
- Cannata, A.; Diliberto, I.S.; Alparone, S.; Gambino, S.; Gresta, S.; Liotta, M.; Madonia, P.; Miluzzo, V.; Aliotta, M.; Montalto, P. Multiparametric approach in investigating volcano-hydrothermal systems: The case study of vulcano (Aeolian Islands, Italy). Pure Appl. Geophys. 2012, 169, 167–182. [Google Scholar] [CrossRef]
- Patania, F.; Gagliano, A.; Imme, G.; la Delfa, S.; lo Nigro, S.; Morelli, D.; Nocera, F.; Galesi, A.; Patane, G. Multi-parametric analysis for forecasting volcanic and seismic phenomena. Nat. Sci. 2012, 4, 601–607. [Google Scholar] [CrossRef]
- Peci, L.; Berrocoso, M.; Fernandez, A.; García, A.; Marrero, J.; Ortíz, R. Embedded ARM system for volcano monitoring in remote areas: Application to the active volcano on Deception Island (Antarctica). Sensors 2014, 14, 672–690. [Google Scholar] [CrossRef] [PubMed]
- Orazi, M.; Peluso, R.; Caputo, A.; Capello, M.; Buonocunto, C.; Martini, M. A Multiparametric low power digitizer: Project and results. In Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes; Marzocchi, W., Zollo, A., Eds.; Istituto Nazionale di Geofisica e Vulcanologia: Naples, Italy, 2008; pp. 435–460. [Google Scholar]
- Werner-Allen, G.; Jhonson, J.; Ruiz, M.; Lees, J.; Matt, W. Monitoring Volcanic Eruptions with a Wireless Sensor Network. In Proceedings of the Second European Workshop on Wireless Sensor Networks (EWSN 05), Istanbul, Turkey, 31 January–2 February 2005.
- Werner-Allen, G.; Lorincz, K.; Johnson, J.; Lees, J.; Weish, M. Fidelity and Yield in a volcano monitoring sensor network. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation, Seatle, WA, USA, 6–8 November 2006; pp. 381–396.
- Song, W.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R. Air-dropped Sensor Network for Real-time High-fidelity Volcano Monitoring. In Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, Wroclaw, Poland, 22–25 June 2009; pp. 305–318.
- Polastre, J.; Szewczyk, R.; Mainwaring, A.; Culler, D.; Anderson, J. Analysis of wireless sensor networks for habitat monitoring. In Wireless Sensor Networks; Kluwer Academic Publishers: Boston, MA, USA, 2004; pp. 399–423. [Google Scholar]
- Scarpato, G.; Caputo, T.; Caputo, A.; de Cesare, W.; Esposito, A.M.; Vadursi, M. A wireless network as support to the monitoring of Campi Flegrei volcano in Italy. In Proceedings of the IEEE International Workshop on Measurements and Networking Proceedings (M&N), Naples, Italy, 7–8 October 2013; pp. 68–73.
- Mattia, M.; Pellegrino, D.; Pulvirenti, M.; Rossi, M. Applicazioni di Sistemi di Comunicazione Wireless a 5 GHz per il Monitoraggio Multiparametrico Dell’etna. Technical Report 207; Istituto Nazionale di Geofisica e Vulcanologia: Sezione di Catania, Italy, 2012. [Google Scholar]
- Scarpato, G.; de Cesare, W.; Orazi, M.; Peluso, R.; Cañuto, A.; Martini, M.; Giudicepietro, F. Sistemi di Trasmissione WiFi per il Monitoraggio Sismico del Vesuvio. Technical Report 11; Istituto Nazionale di Geofisica e Vulcanologia: Sezione di Napoli, Osservatorio Vesuviano, Italy, 2007. [Google Scholar]
- Sainz-Maza, S.; Arnoso, J.; Gonzalez, F.; Martí, J. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands). J. Geophys. Res. Solid Earth 2014, 119, 5033–5051. [Google Scholar] [CrossRef] [Green Version]
- Villasante-Marcos, V.; Finizola, A.; Abella, R.; Barde-Cabusson, S.; Blanco, M.J.; Brenes, B.; Cabrera, V.; Casas, B.; de Agustín, P.; di Gangi, F.; et al. Hydrothermal system of central tenerife volcanic complex, Canary Islands (Spain), inferred from self-potential measurements. J. Volcanol. Geother. Res. 2014, 272, 59–77. [Google Scholar] [CrossRef]
- Finizola, A.; Sortino, F.; Lénat, J.; Aubert, M.; Ripepe, M.; Valenza, M. The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications. Bull. Volcanol. 2003, 65, 486–504. [Google Scholar] [CrossRef]
- López, C.; Blanco, M.J.; Abella, R.; Brenes, B.; Cabrera Rodríguez, V.M.; Casas, B.; Domínguez Cerdeña, I.; Felpeto, A.; Fernández de Villalta, M.; del Fresno, C.; et al. Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Williams-Jones, G.; Rymer, H.; Mauri, G.; Gottsmann, J.; Poland, M.; Carbone, D. Toward continous 4D microgravity monitoring of volcanoes. Geophisics 2008, 73. [Google Scholar] [CrossRef]
- Gottsmann, J.; Fournier, N.; Rymer, H. g_log4PDA: An appliction for continuous monitoring of gravity using LaCoste&Romberg Aliod 100 systems and Palm OS run hand-held computers. Comput. Geosci. 2004, 30, 553–558. [Google Scholar]
- Bonvalot, S.; Diament, M.; Gabalda, G. Continuous gravity recording with Scintrex CG-3M meters: A promising tool for monitoring active zones. Geophys. J. Int. 1998, 135, 470–494. [Google Scholar] [CrossRef] [Green Version]
- Rymer, H. Microgravity change as a precursor to volcanic activity. J. Volcanol. Geother. Res. 1994, 61, 311–328. [Google Scholar] [CrossRef]
- El Wahabi, A.; van Ruymbeke, M.; Ducarme, B. Precursory signal of the last eruption of Mount Etna detected by continuous gravity observations. Int. Center Earth Tides 2007, 143, 11499–11506. [Google Scholar]
- Greco, F.; Iafolla, V.; Pistorio, A.; Fiorenza, E.; Currenti, G.; Napoli, R.; Bonaccorso, A.; del Negro, C. Characterization of the responde of spring-based relative gravimeters during paroxysmal eruptions at Etna volcano. Earth Planets Space 2014, 66, 44. [Google Scholar] [CrossRef]
- Dzurisin, D. The modern volcanologist’s tool kit. In Volcano Deformation: New Geodetic Monitoring Techniques; Springer-Verlag: Berlin, Germany; Heilderberg, Germany; New York, NY, USA, 2007; pp. 26–27. [Google Scholar]
- Eff-Darwitch, A.; Grassing, O.; Fernández Torres, J. An upper limit to ground deformation in the island of Tenerife, Canary Island, for the period 1997–2006. Pure Appl. Geophys. 2008, 165, 1049–1070. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Campisi, O.; Falzone, G.; Gambino, S. Continuous tilt monitoring: Lesson learned from 20 years experience at Mt. Etna. In Mt. Etna: Volcano Laboratory; Bonaccorso, A., Calvari, S., Coltelli, M., del Negro, C., Falsaperla, S., Eds.; American Geophysical Union: Washington, CO, USA, 2004; Volume 143, pp. 307–320. [Google Scholar]
- Peltier, A.; Bachèlery, P.; Staudacher, T. Early detection of large eruptions at Piton de La Fournaise volcano (La Réunion Island): Contribution of a distant tiltmeter station. J. Volcanol. Geother. Res. 2011, 199, 96–104. [Google Scholar] [CrossRef]
- Corrado, G.; Luongo, G. Ground deformation measurements in active volcanic areas using tide gauges. Bull. Volcanol. 1981, 44, 505–511. [Google Scholar] [CrossRef]
- Folco, P.; de Natale, G.; Obrizzo, F.; Troise, C.; Capuano, P.; de Martino, P.; Tammaro, U. Ground Deformation Analysis at Campi Flegrei (Southern Italy) by CGPS and Tide-Gauge Network 2010; EGU General Assembly: Viena, Austria, 2010. [Google Scholar]
- Kleinman, J.W.; Otway, P.M. Lake-level monitoring as a tool for studies of crustal deformation. In Monitoring Volcanoes: Techniques and Strategies Used by the Staff of the Cascades Volcano Observatory, 1980–1990; Ewert, J.W., Swanson, D.A., Eds.; US Geological Survey: Reston, VA, USA, 1992. [Google Scholar]
- Otway, P.M. Vertical deformation monitoring by periodic water level observations, Lake Taupo, New Zealand. In Volcanic Hazards; Latter, J.H., Ed.; Springer: Berlin, Germany; Heidelberg, Germany, 1989; Volume 1, pp. 561–574. [Google Scholar]
- Pingue, F.; Berrine, P.; Obrizzo, F.; de Natale, G.; Esposito, T.; Serio, C.; Tammaro, U.; de Luca, G.; Scarpa, R.; Troise, C.; et al. Ground deformation and gravimetric monitoring at Somma-Vesuvius and in the Campanian volcanic area (Italy). Phys. Chem. Earth 2000, 25, 747–754. [Google Scholar] [CrossRef]
- Andronico, D.; Corsaro, R.A.; Cristaldi, A.; Polacci, M. Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: An example from the 9 January 2005 explosion. J. Volcanol. Geother. Res. 2008, 176, 541–550. [Google Scholar] [CrossRef]
- Dibble, R.R.; Kyle, P.R.; Rowe, C.A. Video and seismic observations of Strombolian eruptions at Erebus volcano, Antarctica. J. Volcanol. Geother. Res. 2008, 177, 619–634. [Google Scholar] [CrossRef]
- Guardato, S. Sistema di Acquisizione Dati a Basso Consumo Basato su Linux per Sensori Multiparemetrici: L’hardware; Technical Report 226; Istituto Nazionale diGeofisica e Vulcanologia: Sezione di Napoli, Italy, 2012. [Google Scholar]
- Pereira, R.L.; Trinidade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazäo, T. A wireless sensor network for monitoring volcano-seismic signals. Nat. Hazards Earth Syst. Sci. 2014, 14, 3123–3142. [Google Scholar] [CrossRef]
- Peters, N.; Oppenheimer, C.; Kyle, P. Autonomous thermal camera system for monitoring the active lava lake at Erebus volcano, Antarctica. Geosci. Instrum. Methods Data Syst. 2014, 3, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Arduino Yun. Available online: https://www.arduino.cc/en/Products/ArduinoYUN (accessed on 3 August 2015).
- Banana Pi. Available online: http://www.bananapi.org (accessed on 3 August 2015).
- BeagleBone. Available online: http://beagleboard.org (accessed on 3 August 2015).
- Intel Galileo. Available online: https://www.arduino.cc/en/ArduinoCertified/IntelGalileo (accessed on 3 August 2015).
- Raspberry Pi. Available online: http://raspberrypi.org (accessed on 25 February 2015).
- Moure, D.; Torres, P. Low power and high efficiency energy acquisition systems for volcano monitoring. In Proceedings of the 19 Symposium IMEKO TC 4, Barcelona, Spain, 18–19 July 2013.
- Arduino. Available online: http://arduino.cc (accessed on 25 February 2015).
- Gnuplot. Available online: http://www.gnuplot.info (accessed on 25 February 2015).
- Imagemagick. Available online: http://www.imagemagick.org/ (accessed on 25 February 2015).
- Libav. Available online: https://libav.org/ (accessed on 25 February 2015).
- Apache. Available online: http://httpd.apache.org/ (accessed on 25 February 2015).
- Telegram-cli. Available online: https://github.com/vysheng/tg (accessed on 25 February 2015).
- Telegram Messenger. Available online: https://telegram.org/ (accessed on 25 February 2015).
- Campbell Scientific CR800. Available online: https:/www.campbellsci.com/cr800-series (accessed on 25 February 2015).
- Vegamet 381. Available online: http://www.vega.com/en/3511 (accessed on 25 February 2015).
- OTT LogoSense 2. Available online: http://www.ott.com (accessed on 25 February 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moure, D.; Torres, P.; Casas, B.; Toma, D.; Blanco, M.J.; Del Río, J.; Manuel, A. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring. Sensors 2015, 15, 20436-20462. https://doi.org/10.3390/s150820436
Moure D, Torres P, Casas B, Toma D, Blanco MJ, Del Río J, Manuel A. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring. Sensors. 2015; 15(8):20436-20462. https://doi.org/10.3390/s150820436
Chicago/Turabian StyleMoure, David, Pedro Torres, Benito Casas, Daniel Toma, María José Blanco, Joaquín Del Río, and Antoni Manuel. 2015. "Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring" Sensors 15, no. 8: 20436-20462. https://doi.org/10.3390/s150820436
APA StyleMoure, D., Torres, P., Casas, B., Toma, D., Blanco, M. J., Del Río, J., & Manuel, A. (2015). Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring. Sensors, 15(8), 20436-20462. https://doi.org/10.3390/s150820436