Visualization of DNA Damage and Protection by Atomic Force Microscopy in Liquid
<p>(<b>A</b>) AFM images of pBR322 plasmids in deposition buffer (25 mM KCl, 10 mM MgCl<sub>2</sub>, 10 mM HEPES (pH 7.5)). (<b>B</b>) AFM images of pBR322 plasmids in deposition buffer (1 mM MgCl<sub>2</sub>, 10 mM HEPES (pH 7.5)) by syringe pump, and the flow rate is 2 min/mL.</p> "> Figure 2
<p>AFM images of pBR322 plasmids in deposition buffer (1 mM MgCl<sub>2</sub>, 10 mM HEPES (pH 7.5)) at different concentrations of PN. (<b>A</b>) Without PN. In (<b>B</b>–<b>H</b>), the concentration of PN is 50 µM, 100 µM, 150 µM, 200 µM, 300 µM, 400 µM, 1 mM.</p> "> Figure 3
<p>AFM images of 4000 bp linear DNA in deposition buffer (1 mM MgCl<sub>2</sub>, 10 mM HEPES (pH 7.5)) at different concentrations of PN. (<b>A</b>) Without PN. (<b>B</b>–<b>H</b>) The concentration of PN is 50 µM, 100 µM, 150 µM, 200 µM, 300 µM, 400 µM, 500 µM.</p> "> Figure 4
<p>A total of 260 nm absorbance of DNA at different concentrations of PN.</p> "> Figure 5
<p>AFM images of 4000 bp linear DNA in deposition buffer (1 mM MgCl<sub>2</sub>, 10 mM HEPES (pH 7.5)) which contain 500 mM ectoine at different concentrations of PN. (<b>A</b>) 300 µM, (<b>B</b>) 400 µM, (<b>C</b>) 500 µM, (<b>D</b>) 1 mM.</p> "> Figure 6
<p>AFM images of 4000 bp linear DNA in deposition buffer (1 mM MgCl<sub>2</sub>, 10 mM HEPES (pH 7.5)) with 300 µM PN. (<b>A</b>–<b>D</b>) Images of repeated scanning on the same area for single stranded DNA.</p> "> Figure 7
<p>Damage process of PN to DNA.</p> "> Figure 8
<p>Schematic representation of interactions between DNA and ONOO<sup>−</sup> in ectoine solution. The central circle denotes DNA, blue oval as water, small orange circle as ONOO<sup>−</sup>, and pentagon as ectoine. (<b>A</b>) interactions between DNA and ONOO<sup>−</sup>; (<b>B</b>) interactions between DNA and ONOO<sup>−</sup> in presence of ectoine.</p> ">
Abstract
:1. Introduction
2. Results
2.1. AFM Characterize the DNA Damage Process
2.2. UV Spectroscopy in the Process of DNA Damage by PN
2.3. Ectoine Protects DNA against PN-Mediated Strand Breaks
2.4. Strand Breaks and Single-Stranded DNA Found Induced by Peroxynitrite
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. UV-Analysis of DNA Treated with PN
4.3. Sample Preparation for AFM Imaging
4.4. AFM Imaging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Norbury, C.J.; Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene 2004, 23, 2797–2808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglia-Mari, G.; Zotter, A.; Vermeulen, W. DNA damage response. Cold Spring Harb. Perspect. Biol. 2011, 3, a000745. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.B.; Elledge, S.J. The DNA damage response: Putting checkpoints in perspective. Nature 2000, 408, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662–680. [Google Scholar] [CrossRef]
- Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018, 118, 1338–1408. [Google Scholar] [CrossRef]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Prolo, C.; Alvarez, M.N.; Radi, R. Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens. Biofactors 2014, 40, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Li, J.; Shi, T.; Liang, J.; Wang, Z.; Bai, L.; Deng, Z.; Zhao, Y.L. Defense Mechanism of Phosphorothioated DNA under Peroxynitrite-Mediated Oxidative Stress. ACS Chem. Biol. 2020, 15, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Ascenzi, P.; Di Masi, A.; Sciorati, C.; Clementi, E. Peroxynitrite—An ugly biofactor? Biofactors 2010, 36, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, S.; Valez, V.; Trujillo, M.; Peluffo, G.; Romero, N.; Zhang, H.; Kalyanaraman, B.; Radi, R. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry 2006, 45, 6813–6825. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Brasch, N.E. Mechanistic studies on the reaction between cob(II)alamin and peroxynitrite: Evidence for a dual role for cob(II)alamin as a scavenger of peroxynitrous acid and nitrogen dioxide. Chemistry 2011, 17, 11805–11812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Houk, K.N.; Olson, L.P. Mechanisms of Peroxynitrous Acid and Methyl Peroxynitrite, ROONO (R = H, Me), Rearrangements: A Conformation-Dependent Homolytic Dissociation. J. Phys. Chem. A 2004, 108, 5864–5871. [Google Scholar] [CrossRef]
- Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Oikawa, S.; Murata, M. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Genes Environ. 2016, 38, 26. [Google Scholar] [CrossRef]
- Yermilov, V.; Yoshie, Y.; Rubio, J.; Ohshima, H. Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 1996, 399, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Szabó, C.; Ohshima, H. DNA damage induced by peroxynitrite: Subsequent biological effects. Nitric. Oxide 1997, 1, 373–385. [Google Scholar] [CrossRef]
- Cantoni, O.; Guidarelli, A. Indirect Mechanisms of DNA Strand Scission by Peroxynitrite. Methods Enzymol. 2008, 440, 111–120. [Google Scholar]
- Guidarelli, A.; Fiorani, M.; Azzolini, C.; Cantoni, O. A novel mechanism, uniquely dependent on mitochondrial calcium accumulation, whereby peroxynitrite promotes formation of superoxide/hydrogen peroxide and the ensuing strand scission of genomic DNA. Antioxid Redox Signal. 2010, 13, 745–856. [Google Scholar] [CrossRef]
- Bhamra, I.; Compagnone-Post, P.; O’Neil, I.A.; Iwanejko, L.A.; Bates, A.D.; Cosstick, R. Base-pairing preferences, physicochemical properties and mutational behaviour of the DNA lesion 8-nitroguanine. Nucleic Acids Res. 2012, 40, 11126–11138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, R.; Hussain, A.; Ahsan, H. Peroxynitrite: Cellular pathology and implications in autoimmunity. J. Immunoass. Immunochem 2019, 40, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, W.; Qadir, S.; Ahmad, M.; Rafiq, M.; Hasan, F.; Tehan, R.; McPhail, K.L.; Shah, A.A. Ectoine: A compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage. J. Appl. Microbiol. 2018, 125, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.B.; Meyer, S.; Schroter, M.A.; Kunte, H.J.; Solomun, T.; Sturm, H. DNA protection by ectoine from ionizing radiation: Molecular mechanisms. Phys. Chem. Chem. Phys. 2017, 19, 25717–25722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brands, S.; Schein, P.; Castro-Ochoa, K.F.; Galinski, E.A. Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Arch. Biochem. Biophys. 2019, 674, 108097. [Google Scholar] [CrossRef] [PubMed]
- Severin, J.; Wohlfarth, A.; Galinski, E.A. The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. Microbiology 1992, 138, 1629–1638. [Google Scholar]
- Schwibbert, K.; Marin-Sanguino, A.; Bagyan, I.; Heidrich, G.; Lentzen, G.; Seitz, H.; Rampp, M.; Schuster, S.C.; Klenk, H.P.; Pfeiffer, F.; et al. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ. Microbiol. 2011, 13, 1973–1994. [Google Scholar] [CrossRef] [Green Version]
- Schroter, M.A.; Meyer, S.; Hahn, M.B.; Solomun, T.; Sturm, H.; Kunte, H.J. Ectoine protects DNA from damage by ionizing radiation. Sci. Rep. 2017, 7, 15272. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.B.; Uhlig, F.; Solomun, T.; Smiatek, J.; Sturm, H. Combined influence of ectoine and salt: Spectroscopic and numerical evidence for compensating effects on aqueous solutions. Phys. Chem. Chem. Phys. 2016, 18, 28398–28402. [Google Scholar] [CrossRef] [Green Version]
- Smiatek, J.; Harishchandra, R.K.; Rubner, O.; Galla, H.J.; Heuer, A. Properties of compatible solutes in aqueous solution. Biophys. Chem. 2012, 160, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.B.; Solomun, T.; Wellhausen, R.; Hermann, S.; Seitz, H.; Meyer, S.; Kunte, H.J.; Zeman, J.; Uhlig, F.; Smiatek, J.; et al. Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA. J. Phys. Chem B 2015, 119, 15212–15220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malin, G.; Iakobashvili, R.; Lapidot, A. Effect of tetrahydropyrimidine derivatives on protein-nucleic acids interaction. Type II restriction endonucleases as a model system. J. Biol. Chem 1999, 274, 6920–6929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnoor, M.; Voss, P.; Cullen, P.; Boking, T.; Galla, H.J.; Galinski, E.A.; Lorkowski, S. Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer. Biochem. Biophys Res. Commun. 2004, 322, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Schroter, M.A.; Hahn, M.B.; Solomun, T.; Sturm, H.; Kunte, H.J. Ectoine can enhance structural changes in DNA in vitro. Sci. Rep. 2017, 7, 7170. [Google Scholar] [CrossRef] [Green Version]
- Oprzeska-Zingrebe, E.A.; Meyer, S.; Roloff, A.; Kunte, H.J.; Smiatek, J. Influence of compatible solute ectoine on distinct DNA structures: Thermodynamic insights into molecular binding mechanisms and destabilization effects. Phys. Chem. Chem. Phys. 2018, 20, 25861–25874. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.; Yang, G. The promotion and suppression of DNA charge neutralization by the cosolute ectoine. RSC Adv. 2019, 9, 41050–41057. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.C.; Salgo, M.G.; Pryor, W.A. Scavenging of peroxynitrite by a phenolic/peroxidase system prevents oxidative damage to DNA. FEBS Lett. 1998, 426, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Chakrabarty, A.; Guengerich, F.P.; Chowdhury, G. Protective Role of Glutathione against Peroxynitrite-Mediated DNA Damage During Acute Inflammation. Chem. Res. Toxicol 2020, 33, 2668–2674. [Google Scholar] [CrossRef]
- Anushree, G.; Aravind, P.; Vinod, D.; Hemalatha, N.; Girisha, S.; Devaraju, K. Peroxynitrite-induced conformational changes in DNA that lead to cell death: UV, CD spectral, molecular dynamics simulation and FACS analysis. Nucleosides Nucleotides Nucleic Acids 2020, 40, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Cao, B.; Guo, Z.; Yang, G. Single molecular demonstration of modulating charge inversion of DNA. Sci. Rep. 2016, 6, 38628. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wang, Y.; Yang, A.; Yang, G. The effect of pH on charge inversion and condensation of DNA. Soft Matter 2016, 12, 6669–6674. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Wang, Y.; Cao, B.; Guo, Z.; Chen, Y.; Yang, G. The suppression and promotion of DNA charge inversion by mixing counterions. Soft Matter 2015, 11, 4099–4105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ran, S.; Man, B.; Yang, G. Ethanol induces condensation of single DNA molecules. Soft Matter 2011, 7, 4425–4434. [Google Scholar] [CrossRef]
- Xia, W.; Wang, Y.; Yang, A.; Yang, G. DNA compaction and charge inversion induced by organic monovalent ions. Polymers 2017, 9, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ran, S.; Man, B.; Yang, G. DNA condensations on mica surfaces induced collaboratively by alcohol and hexammine cobalt. Colloids Surf. B Biointerfaces 2011, 83, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Heenan, P.R.; Perkins, T.T. Imaging DNA Equilibrated onto Mica in Liquid Using Biochemically Relevant Deposition Conditions. ACS Nano 2019, 13, 4220–4229. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, W.; Wang, Y.; Yang, G. DNA compaction and charge neutralization regulated by divalent ions in very low pH solution. Polymers 2019, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Murugesapillai, D.; Bouaziz, S.; Maher, L.J.; Israeloff, N.E.; Cameron, C.E.; Williams, M.C. Accurate nanoscale flexibility measurement of DNA and DNA-protein complexes by atomic force microscopy in liquid. Nanoscale 2017, 9, 11327–11337. [Google Scholar] [CrossRef] [Green Version]
- Aufdembrink, L.M.; Hoog, T.G.; Pawlak, M.R.; Bachan, B.F.; Heili, J.M.; Engelhart, A.E. Methods for thermal denaturation studies of nucleic acids in complex with fluorogenic dyes. Methods Enzymol. 2019, 623, 23–43. [Google Scholar]
- Islam, B.U.; Habib, S.; Ahmad, P.; Allarakha, S.; Moinuddin; Ali, A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J. Clin. Biochem. 2015, 30, 368–385. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.E. Cosolvent interactions with biomolecules: Relating computer simulation data to experimental thermodynamic data. J. Phys. Chem. B 2004, 108, 18716–18724. [Google Scholar] [CrossRef]
- Smiatek, J. Aqueous ionic liquids and their effects on protein structures: An overview on recent theoretical and experimental results. J. Phys. Condens. Matter 2017, 29, 233001. [Google Scholar] [CrossRef] [PubMed]
Concentration of PN (%) | Lp (nm) | |
---|---|---|
0 | 863 ± 37 | 47 ± 6 |
50 | 758 ± 47 | 32 ± 5 |
100 | 720 ± 55 | 26 ± 5 |
150 | 441 ± 67 | 9 ± 4 |
200 | 373 ± 103 | 4 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Wang, Y.; Yang, G. Visualization of DNA Damage and Protection by Atomic Force Microscopy in Liquid. Int. J. Mol. Sci. 2022, 23, 4388. https://doi.org/10.3390/ijms23084388
Dai T, Wang Y, Yang G. Visualization of DNA Damage and Protection by Atomic Force Microscopy in Liquid. International Journal of Molecular Sciences. 2022; 23(8):4388. https://doi.org/10.3390/ijms23084388
Chicago/Turabian StyleDai, Tinghui, Yanwei Wang, and Guangcan Yang. 2022. "Visualization of DNA Damage and Protection by Atomic Force Microscopy in Liquid" International Journal of Molecular Sciences 23, no. 8: 4388. https://doi.org/10.3390/ijms23084388
APA StyleDai, T., Wang, Y., & Yang, G. (2022). Visualization of DNA Damage and Protection by Atomic Force Microscopy in Liquid. International Journal of Molecular Sciences, 23(8), 4388. https://doi.org/10.3390/ijms23084388