Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide
<p>Assessment of dark toxicity and phototoxicity of potassium iodide (KI) on plaque suspension. The survival fraction of <span class="html-italic">S. mutans</span> (<b>A</b>), <span class="html-italic">C. albicans</span> (<b>B</b>), and total microorganisms (<b>C</b>) were determined by the counting forming unit (CFU) method.</p> "> Figure 2
<p>Antimicrobial effect of different concentrations of KI on toluidine blue O (TBO)-mediated antimicrobial photodynamic therapy (aPDT) on microorganisms in plaque suspension. The survival curves of (<b>a</b>) <span class="html-italic">S. mutan</span><span class="html-italic">s</span>, (<b>b</b>) <span class="html-italic">C. albicans,</span> and (<b>c</b>) total microorganisms. Antimicrobial effect of different concentrations of TBO with or without KI on microorganisms in plaque suspension. The survival curves of (<b>d</b>) <span class="html-italic">S. mutan</span><span class="html-italic">s</span>, (<b>e</b>) <span class="html-italic">C. albicans</span>, and (<b>f</b>) total microorganisms. Antimicrobial effect of different light doses on microorganisms in plaque suspension. The survival curves of (<b>g</b>) <span class="html-italic">S. mutan</span><span class="html-italic">s</span>, (<b>h</b>) <span class="html-italic">C. albicans</span>, and (<b>i</b>) total microorganisms.</p> "> Figure 3
<p>Effect of TBO-mediated aPDT with KI on human dental pulp cells (hDPCs) viability and morphology. HDPCs were incubated with 1 μg/mL TBO and 200 mM KI after shining different doses of red light. (<b>a</b>) HDPCs viability in each group determined by cell counting kit-8 (CCK-8) assay. (<b>b</b>) Light microscope observation of hDPCs without any treatment, magnification ×100. (<b>c</b>–<b>f</b>) Light microscope observation of hDPCs when incubated with 1 μg/mL TBO and 200 mM KI after shining 12, 24, 36, 48 J/cm<sup>2</sup> of red light respectively, magnification × 100. (* <span class="html-italic">p</span> < 0.05 in ANOVA test).</p> "> Figure 4
<p>(<b>a</b>) <sup>1</sup>O<sub>2</sub> detection by singlet oxygen sensor green (SOSG) fluorescent probe. (<b>b</b>) The time-resolved kinetics of the formation and decay of <sup>1</sup>O<sub>2</sub> 1270 nm phosphorescence. (<b>c</b>) Assessment of the antimicrobial effect of TBO-mediated aPDT in combination with KI in the presence of 50 mM L-histidine.</p> "> Figure 5
<p>(<b>a</b>) The spectrum of different reaction mixtures at dark and after illumination. (<b>b</b>) Production of iodine measured by starch indicator assay. (<b>c</b>) Production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) measured by Amplex Red assay.</p> "> Figure 6
<p>Colony-forming units of living microorganism on dentin slices after different treatments. Values with dissimilar letters indicated significant difference between two groups (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Assessment of Antimicrobial Effect of KI
2.2. aPDT Parameters Exploration
2.2.1. KI Concentration
2.2.2. TBO Concentration
2.2.3. Light Dose
2.3. Cytotoxicity Evaluation
2.4. 1O2 Detection and 1O2 Quenching Experiment
2.5. Free Iodine Molecules and H2O2 Detection
2.6. Anti-Biofilm Assessment
3. Discussion
4. Materials and Methods
4.1. Microorganism Growth and Culture Condition
4.2. Dual-Species Plaque Suspension Preparation
4.3. Photosensitizer and Light Source
4.4. Assessment of Antimicrobial Effect of KI
4.5. aPDT Parameters Exploration in Dual-Species Plaque Suspension
4.6. Cytotoxicity Assay
4.7. SOSG Probe Test
4.8. Time-Resolved 1O2 Detection
4.9. 1O2 Quencher Experiment
4.10. UV-Vis Spectrum Analysis
4.11. Iodine Starch Test
4.12. Amplex Red Assay for H2O2
4.13. Anti-Biofilm Assessment by CFU Assay
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phantumvanit, P.; Makino, Y.; Ogawa, H.; Rugg-Gunn, A.; Moynihan, P.; Petersen, P.E.; Evans, W.; Feldens, C.A.; Lo, E.; Khoshnevisan, M.H.; et al. WHO Global Consultation on Public Health Intervention against Early Childhood Caries. Community Dent. Oral Epidemiol. 2018, 46, 280–287. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Hsu, K.L.; Melo, M.A.; Dhar, V.; Tinanoff, N. Mapping Evidence on Early Childhood Caries Prevalence: Complexity of Worldwide Data Reporting. Int. J. Clin. Pediatr. Dent. 2021, 14, 1–7. [Google Scholar] [PubMed]
- Kassebaum, N.J.; Bernabe, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef]
- Ramos-Gomez, F.J.; Weintraub, J.A.; Gansky, S.A.; Hoover, C.I.; Featherstone, J.D. Bacterial, behavioral and environmental factors associated with early childhood caries. J. Clin. Pediatr. Dent. 2002, 26, 165–173. [Google Scholar] [CrossRef]
- Meyer, F.; Enax, J. Early Childhood Caries: Epidemiology, Aetiology, and Prevention. Int. J. Dent. 2018, 2018, 1415873. [Google Scholar] [CrossRef]
- Souza, J.G.S.; Lima, C.V.; Costa Oliveira, B.E.; Ricomini-Filho, A.P.; Faveri, M.; Sukotjo, C.; Feres, M.; Del Bel Cury, A.A.; Barão, V.A.R. Dose-response effect of chlorhexidine on a multispecies oral biofilm formed on pure titanium and on a titanium-zirconium alloy. Biofouling 2019, 34, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Saleem, H.G.; Seers, C.A.; Sabri, A.N.; Reynolds, E.C. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant. BMC Microbiol. 2016, 16, 214. [Google Scholar] [CrossRef]
- Wand, M.E.; Bock, L.J.; Bonney, L.C.; Sutton, J.M. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob. Agents Chemother. 2017, 61, e01162-16. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, R.J.; Amante, A.; Kopycka-Kedzierawski, D.T.; Billings, R.J.; Feng, C. Dental caries recurrence following clinical treatment for severe early childhood caries. Pediatr Dent. 2011, 33, 510–514. [Google Scholar]
- Kim, H.E.; Dhall, A.; Liu, Y.; Bawazir, M.; Koo, H.; Hwang, G. Intervening in Symbiotic Cross-Kingdom Biofilm Interactions: A Binding Mechanism-Based Nonmicrobicidal Approach. mBio 2021, 12, e00651-21. [Google Scholar] [CrossRef]
- Oruba, Z.; Gawron, K.; Bereta, G.P.; Sroka, A.; Potempa, J.; Chomyszyn-Gajewska, M. Antimicrobial photodynamic therapy effectively reduces Porphyromonas gingivalis infection in gingival fibroblasts and keratinocytes: An in vitro study. Photodiagnosis Photodyn. Ther. 2021, 34, 102330. [Google Scholar] [CrossRef] [PubMed]
- Valente, N.A.; Mang, T.; Hatton, M.; Mikulski, L.; Andreana, S. Effects of Two Diode Lasers with and Without Photosensitization on Contaminated Implant Surfaces: An Ex Vivo Study. Photomed. Laser Surg. 2017, 35, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg. Med. 2006, 38, 468–481. [Google Scholar] [CrossRef]
- Gursoy, H.; Ozcakir-Tomruk, C.; Tanalp, J.; Yilmaz, S. Photodynamic therapy in dentistry: A literature review. Clin. Oral Investig. 2013, 17, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Soukos, N.S.; Goodson, J.M. Photodynamic therapy in the control of oral biofilms. Periodontology 2000 2011, 55, 143–166. [Google Scholar] [CrossRef] [PubMed]
- Bargrizan, M.; Fekrazad, R.; Goudarzi, N.; Goudarzi, N. Effects of antibacterial photodynamic therapy on salivary mutans streptococci in 5- to 6-year-olds with severe early childhood caries. Lasers Med. Sci. 2019, 34, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, L.; Cai, Z.; Huang, S.; Li, Y.; Lei, L.; Huang, X. Disinfection of Cariogenic Pathogens in Planktonic Lifestyle, Biofilm and Carious Dentine with Antimicrobial Photodynamic Therapy. Photochem. Photobiol. 2019, 96, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Gomes, A.; Mesquita, M.Q.; Moura, N.M.M.; Neves, M.; Faustino, M.A.F.; Almeida, A. An Insight into the Potentiation Effect of Potassium Iodide on aPDT Efficacy. Front. Microbiol. 2018, 9, 2665. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhang, X.; Szewczyk, G.; El-Hussein, A.; Huang, Y.Y.; Sarna, T.; Hamblin, M.R. Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies. Antimicrob. Agents Chemother. 2017, 61, e00467-17. [Google Scholar] [CrossRef]
- Vecchio, D.; Gupta, A.; Huang, L.; Landi, G.; Avci, P.; Rodas, A.; Hamblin, M.R. Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob. Agents Chemother. 2015, 59, 5203–5212. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yuan, L.; Jia, W.; Qin, M.; Wang, Y. Effects of Rose Bengal- and Methylene Blue-Mediated Potassium Iodide-Potentiated Photodynamic Therapy on Enterococcus faecalis: A Comparative Study. Lasers Surg. Med. 2021, 53, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lyu, P.; Huang, Y.Y.; Du, N.; Qi, W.; Hamblin, M.R.; Wang, Y. Potassium iodide enhances the photobactericidal effect of methylene blue on Enterococcus faecalis as planktonic cells and as biofilm infection in teeth. J. Photochem. Photobiol. B 2020, 203, 111730. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.H.; Yu, C.C.; Chang, K.C.; Tseng, Y.H.; Li, P.J.; Hsia, S.M.; Chiu, K.C.; Shieh, T.M. Synergistic Effect of Combination of a Temoporfin-Based Photodynamic Therapy with Potassium Iodide or Antibacterial Agents on Oral Disease Pathogens In Vitro. Pharmaceuticals 2022, 15, 488. [Google Scholar] [CrossRef]
- Hu, X.; Huang, Y.Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef]
- Sperandio, F.F.; Huang, Y.Y.; Hamblin, M.R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Antiinfect. Drug Discov. 2013, 8, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Parisotto, T.M.; Steiner-Oliveira, C.; Silva, C.M.; Rodrigues, L.K.; Nobre-dos-Santos, M. Early childhood caries and mutans streptococci: A systematic review. Oral Health Prev. Dent. 2010, 8, 59–70. [Google Scholar] [PubMed]
- Garcia, B.A.; Acosta, N.C.; Tomar, S.L.; Roesch, L.F.W.; Lemos, J.A.; Mugayar, L.R.F.; Abranches, J. Association of Candida albicans and Cbp(+) Streptococcus mutans with early childhood caries recurrence. Sci. Rep. 2021, 11, 10802. [Google Scholar] [CrossRef]
- Xiao, J.; Moon, Y.; Li, L.; Rustchenko, E.; Wakabayashi, H.; Zhao, X.; Feng, C.; Gill, S.R.; McLaren, S.; Malmstrom, H.; et al. Candida albicans Carriage in Children with Severe Early Childhood Caries (S-ECC) and Maternal Relatedness. PLoS ONE 2016, 11, e0164242. [Google Scholar] [CrossRef]
- Ellepola, K.; Liu, Y.; Cao, T.; Koo, H.; Seneviratne, C.J. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms. J. Dent. Res. 2017, 96, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.X.; Tian, J.; Liu, Y.; Dhall, A.; Koo, H.; Hwang, G. Cross-Kingdom Cell-to-Cell Interactions in Cariogenic Biofilm Initiation. J. Dent. Res. 2021, 100, 74–81. [Google Scholar] [CrossRef]
- Huang, L.; Bhayana, B.; Xuan, W.; Sanchez, R.P.; McCulloch, B.J.; Lalwani, S.; Hamblin, M.R. Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: Potentiation by potassium iodide and photochemical mechanisms. J. Photochem. Photobiol. B 2018, 186, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Balhaddad, A.A.; AlQranei, M.S.; Ibrahim, M.S.; Weir, M.D.; Martinho, F.C.; Xu, H.H.K.; Melo, M.A.S. Light Energy Dose and Photosensitizer Concentration Are Determinants of Effective Photo-Killing against Caries-Related Biofilms. Int. J. Mol. Sci. 2020, 21, 7612. [Google Scholar] [CrossRef]
- Street, C.N.; Pedigo, L.A.; Loebel, N.G. Energy dose parameters affect antimicrobial photodynamic therapy-mediated eradication of periopathogenic biofilm and planktonic cultures. Photomed. Laser Surg. 2010, 28 (Suppl. S1), S-61–S-66. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Z.; Liu, H.; Chen, X.; Liu, Y.; Tan, H. Photodynamic inactivation of fibroblasts and inhibition of Staphylococcus epidermidis adhesion and biofilm formation by toluidine blue O. Mol. Med. Rep. 2017, 15, 1816–1822. [Google Scholar] [CrossRef]
- Costa, L.M.; Matos Fde, S.; Correia, A.M.; Carvalho, N.C.; Faria, E.S.A.L.; Paranhos, L.R.; Ribeiro, M.A. Tooth color change caused by photosensitizers after photodynamic therapy: An in vitro study. J. Photochem. Photobiol. B 2016, 160, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Diniz, I.M.; Teixeira, K.I.; Araujo, P.V.; Araujo, M.S.; Marques, M.M.; Poletto, L.T.; Cortes, M.E. Evaluation of antibacterial photodynamic therapy effects on human dental pulp cell cultures. Photodiagnosis Photodyn. Ther. 2014, 11, 300–306. [Google Scholar] [CrossRef]
- Zach, L.; Cohen, G. Pulp Response to Externally Applied Heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Hamblin, M.R. Potentiation of antimicrobial photodynamic inactivation by inorganic salts. Expert Rev. Anti. Infect. Ther. 2017, 15, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Kasimova, K.R.; Sadasivam, M.; Landi, G.; Sarna, T.; Hamblin, M.R. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion. Photochem. Photobiol. Sci. 2014, 13, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; El-Hussein, A.; Xuan, W.; Hamblin, M.R. Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J. Photochem. Photobiol. B 2018, 178, 277–286. [Google Scholar] [CrossRef]
- Peter, W. Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1989, 18, 1637–1755. [Google Scholar]
- Dalmázio, I.; Moura, F.C.C.; Araújo, M.H.; Alves, T.M.A.; Lago, R.M.; Lima, G.F.D.; Duarte, H.A.; Augusti, R. The iodide-catalyzed decomposition of hydrogen peroxide: Mechanistic details of an old reaction as revealed by electrospray ionization mass spectrometry monitoring. J. Brazil Chem. Soc. 2008, 19, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Szewczyk, G.; Sarna, T.; Hamblin, M.R. Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin. ACS Infect. Dis. 2017, 3, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, D.; Wang, M.; Lin, J.; Li, B.; Xie, S. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement. J. Opt. 2011, 13, 125301. [Google Scholar] [CrossRef]
Group | TBO Concentration (μg/mL) | KI Concentration (mM) | Light Dose (J/cm2) |
---|---|---|---|
Light | 4 | 25, 50, 100, 200 | 24 |
Dark | 4 | 25, 50, 100, 200 | / |
Group | TBO Concentration (μg/mL) | KI Concentration (mM) | Light Dose (J/cm2) |
---|---|---|---|
Light | 0.25, 0.5, 1, 2, 4 | 200 | 24 |
Light | 0.25, 0.5, 1, 2, 4 | / | 24 |
Dark | 0.25, 0.5, 1, 2, 4 | 200 | / |
Dark | 0.25, 0.5, 1, 2, 4 | / | / |
Group | TBO Concentration (μg/mL) | KI Concentration (mM) | Light Dose (J/cm2) |
---|---|---|---|
1 | 4 | 200 | 24 |
2 | 4 | / | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Du, J.; Huang, S.; Wang, S.; Wang, Y.; Lei, L.; Zhang, C.; Huang, X. Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide. Int. J. Mol. Sci. 2022, 23, 11373. https://doi.org/10.3390/ijms231911373
Li Y, Du J, Huang S, Wang S, Wang Y, Lei L, Zhang C, Huang X. Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide. International Journal of Molecular Sciences. 2022; 23(19):11373. https://doi.org/10.3390/ijms231911373
Chicago/Turabian StyleLi, Yijun, Jingyun Du, Shan Huang, Shaofeng Wang, Yanhuang Wang, Lishan Lei, Chengfei Zhang, and Xiaojing Huang. 2022. "Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide" International Journal of Molecular Sciences 23, no. 19: 11373. https://doi.org/10.3390/ijms231911373
APA StyleLi, Y., Du, J., Huang, S., Wang, S., Wang, Y., Lei, L., Zhang, C., & Huang, X. (2022). Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide. International Journal of Molecular Sciences, 23(19), 11373. https://doi.org/10.3390/ijms231911373