Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli
<p>CD analysis of hydrophilic proteins. (<b>A</b>) The secondary structure of four non-natural hydrophilic proteins (<b>B</b>) and hydrophilic domain proteins in phosphate buffer. Percentages of a random coil (white), beta-Turn (dark grey), parallel (grey), antiparallel (light grey), and α-helix (red) are deduced from CD spectra using the CDNN program.</p> "> Figure 2
<p>Survival phenotype plate assay of <span class="html-italic">E. coli</span> recombinant strains under high salt condition.</p> "> Figure 3
<p>Total antioxidant capacity analysis. (<b>A</b>) Analysis of total antioxidant capacity of recombinant strains BL21-DS + DrHD and BL21-DrHD. (<b>B</b>) Analysis of total antioxidant capacity of recombinant strains BL21-DS + BnHD and BL21-BnHD. (<b>C</b>) Analysis of total antioxidant capacity of recombinant strains BL21-DS + CeHD and BL21-CeHD. (<b>D</b>) Analysis of total antioxidant capacity of recombinant strains BL21-DS + YlHD and BL21-YlHD. The symbols ‘ns’, ‘*’, ‘**’ and ‘***’, respectively, represent ‘no significantly different (<span class="html-italic">p</span> > 0.05)’, ‘a significant difference (0.01 < <span class="html-italic">p</span> < 0.05)’, ‘an extremely significant difference (0.001 < <span class="html-italic">p</span> < 0.01)’, and ‘the most significant difference (<span class="html-italic">p</span> < 0.001)’.</p> "> Figure 4
<p>Superoxide dismutase activity analysis. (<b>A</b>) Analysis of superoxide dismutase activity of recombinant strains BL21-DS + DrHD and BL21-DrHD. (<b>B</b>) Analysis of superoxide dismutase activity of recombinant strains BL21-DS + BnHD and BL21-BnHD. (<b>C</b>) Analysis of superoxide dismutase activity of recombinant strains BL21-DS + CeHD and BL21-CeHD. (<b>D</b>) Analysis of superoxide dismutase activity of recombinant strains BL21-DS + YlHD and BL21-YlHD. The symbols ‘ns’, ‘**’ and ‘***’, respectively, represent ‘no significantly different (<span class="html-italic">p</span> > 0.05)’, ‘a significant difference (0.01 < <span class="html-italic">p</span> < 0.05)’, ‘an extremely significant difference (0.001 < <span class="html-italic">p</span> < 0.01)’, and ‘the most significant difference (<span class="html-italic">p</span> < 0.001)’.</p> "> Figure 5
<p>Lactate dehydrogenase activity analysis. (<b>A</b>) Analysis of lactate dehydrogenase activity of recombinant strains BL21-DS + DrHD and BL21-DrHD. (<b>B</b>) Analysis of lactate dehydrogenase activity of recombinant strains BL21-DS + BnHD and BL21-BnHD. (<b>C</b>) Analysis of lactate dehydrogenase activity of recombinant strains BL21-DS + CeHD and BL21-CeHD. (<b>D</b>) Analysis of lactate dehydrogenase activity of recombinant strains BL21-DS + YlHD and BL21-YlHD. The symbols ‘ns’ and ‘***’, respectively, represent ‘no significantly different (<span class="html-italic">p</span> > 0.05)’, ‘a significant difference (0.01 < <span class="html-italic">p</span> < 0.05)’, ‘an extremely significant difference (0.001 < <span class="html-italic">p</span> < 0.01)’, and ‘the most significant difference (<span class="html-italic">p</span> < 0.001)’.</p> "> Figure 6
<p>Analysis of MDA production. (<b>A</b>) Analysis of MDA production of recombinant strains BL21-DS + DrHD and BL21-DrHD. (<b>B</b>) Analysis of MDA production of recombinant strains BL21-DS + BnHD and BL21-BnHD. (<b>C</b>) Analysis of MDA production of recombinant strains BL21-DS + CeHD and BL21-CeHD. (<b>D</b>) Analysis of MDA production of recombinant strains BL21-DS + YlHD and BL21-YlHD. The symbols ‘ns’, ‘*’, ‘**’ and ‘***’, respectively, represent ‘no significantly different (<span class="html-italic">p</span> > 0.05)’, ‘a significant difference (0.01 < <span class="html-italic">p</span> < 0.05)’, ‘an extremely significant difference (0.001 < <span class="html-italic">p</span> < 0.01)’, and ‘the most significant difference (<span class="html-italic">p</span> < 0.001)’.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Silico Analysis of Four Hydrophilic Proteins
2.2. Order Analysis of Four Non-Natural Hydrophilic Proteins
2.3. Ordered Hydrophilic Proteins Improved Salinity Tolerance of E. coli
2.4. Ordered Hydrophilic Proteins Increased the Total Antioxidant Capacity of E. coli
2.5. E. coli Containing Ordered Hydrophilic Protein Had Higher SOD and CAT Activity
2.6. E. coli Containing Ordered Hydrophilic Protein Had Higher LDH Activity and Less MDA Production
3. Discussion
4. Materials and Methods
4.1. Strains, Plasmids and Culture Conditions
4.2. Construction of Recombinant Vector and E. coli Strains
4.3. Circular Dichroism (CD) Spectroscopic Analysis
4.4. Salt Stress Tolerance in E. coli
4.5. In Vivo Enzyme Activity Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef]
- Battaglia, M.; Olvera-Carrillo, Y.; Garciarrubio, A.; Campos, F.; Covarrubias, A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008, 148, 6–24. [Google Scholar] [CrossRef] [Green Version]
- Magwanga, R.O.; Lu, P.; Kirungu, J.N.; Lu, H.; Wang, X.; Cai, X.; Zhou, Z.; Zhang, Z.; Salih, H.; Wang, K.; et al. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet. 2018, 19, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battista, J.R.; Park, M.J.; McLemore, A.E. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 2001, 43, 133–139. [Google Scholar] [CrossRef]
- Oliver, M.J.; Dowd, S.E.; Zaragoza, J.; Mauget, S.A.; Payton, P.R. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: Transcript classification and analysis. BMC Genom. 2004, 5, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, K.; Tisi, L.; Basran, A.; Browne, J.; Burnell, A.; Zurdo, J.; Tunnacliffe, A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 2003, 278, 12977–12984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covarrubias, A.A.; Cuevas-Velazquez, C.L.; Romero-Pérez, P.S.; Rendón-Luna, D.F.; Chater, C.C.C. Structural disorder in plant proteins: Where plasticity meets sessility. Cell. Mol. Life Sci. 2017, 74, 3119–3147. [Google Scholar] [CrossRef]
- Reyes, J.L.; Rodrigo, M.J.; Colmenero-Flores, J.M.; Gil, J.V.; Garay-Arroyo, A.; Campos, F.; Salamini, F.; Bartels, D.; Covarrubias, A.A. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ. 2005, 28, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Iturbe-Ormaetxe, I.; Escuredo, P.R.; Arrese-Igor, C.; Becana, M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 1998, 116, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Akashi, K.; Nishimura, N.; Ishida, Y.; Yokota, A. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem. Biophys. Res. Commun. 2004, 323, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Fujinaga, M.; Kuboi, T. Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 2005, 56, 2695–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazuoka, T.; Oeda, K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol. 1994, 35, 601–611. [Google Scholar] [CrossRef]
- Grelet, J.; Benamar, A.; Teyssier, E.; Avelange-Macherel, M.H.; Grunwald, D.; Macherel, D. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol. 2005, 137, 157–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zheng, Y. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 2005, 331, 325–332. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Zhang, Y.; Wang, W.; Li, R. Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Curr. Microbiol. 2010, 60, 373–378. [Google Scholar] [CrossRef]
- Xue, R.; Liu, Y.; Zheng, Y.; Wu, Y.; Li, X.; Pei, F.; Ni, J. Three-dimensional structure and mimetic-membrane association of consensus 11-amino-acid motif from soybean LEA3 protein. Biopolymers 2012, 98, 59–66. [Google Scholar] [CrossRef]
- Dure, L. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 1993, 3, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Dure, L., III. Occurrence of a Repeating 11-Mer Amino Acid Sequence Motif in Diverse Organisms. Protein Pept. Lett. 2005, 8, 115–122. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Han, J.; Jiang, S.; Geng, X.; Xue, D.; Chen, Y.; Zhang, C.; Zhou, Z.; Zhang, W.; et al. Functional assessment of hydrophilic domains of late embryogenesis abundant proteins from distant organisms. Microb. Biotechnol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolleter, D.; Jaquinod, M.; Mangavel, C.; Passirani, C.; Saulnier, P.; Manon, S.; Teyssier, E.; Payet, N.; Avelange-Macherel, M.H.; Macherel, D. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 2007, 19, 1580–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabortee, S.; Meersman, F.; Kaminski Schierle, G.S.; Bertoncini, C.W.; McGee, B.; Kaminski, C.F.; Tunnacliffe, A. Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Proc. Natl. Acad. Sci. USA 2010, 107, 16084–16089. [Google Scholar] [CrossRef] [Green Version]
- Boswell, L.C.; Menze, M.A.; Hand, S.C. Group 3 late embryogenesis abundant proteins from embryos of Artemia franciscana: Structural properties and protective abilities during desiccation. Physiol. Biochem. Zool. 2014, 87, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Gao, K.; Yao, T.; Lu, H.; Zhou, C.; Guo, M.; Dai, S.; Wang, L.; Xu, H.; Tian, B.; et al. Late embryogenesis abundant group3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans. Microbiol. Res. 2020, 240, 126559. [Google Scholar] [CrossRef]
- Berckman, E.A.; Hartzell, E.J.; Mitkas, A.A.; Sun, Q.; Chen, W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 35–62. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, S.; Yan, S.; Wang, J.; Zhang, L.; Xin, L.I.; Wen, L.; Wu, J. Phenylethyl isothiocyanate induces oxidative damage of porcine kidney cells mediated by reactive oxygen species. J. Biochem. Mol. Toxicol. 2020, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Torres, M. Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 2002, 166. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.A. ROS in biotic interactions. Physiol. Plant. 2010, 138, 414–429. [Google Scholar] [CrossRef]
- Ozcan, M.E.; Gulec, M.; Ozerol, E.; Polat, R.; Akyol, O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int. Clin. Psychopharmacol. 2004, 19, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Rikkerink, E.H.A.; Jones, W.T.; Uversky, V.N. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 2013, 25, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhang, C.; Hua, Y. Structural modification of soy protein by the lipid peroxidation product malondialdehyde. J. Sci. Food Agric. 2009, 89, 1416–1423. [Google Scholar] [CrossRef]
- Metwally, K.; Ikeno, S. A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli. Appl. Biochem. Biotechnol. 2020, 191, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Hand, S.C.; Menze, M.A.; Toner, M.; Boswell, L.; Moore, D. LEA proteins during water stress: Not just for plants anymore. Annu. Rev. Physiol. 2011, 73, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Furuki, T.; Niwa, T.; Taguchi, H.; Hatanaka, R.; Kikawada, T.; Sakurai, M. A LEA model peptide protects the function of a red fluorescent protein in the dry state. Biochem. Biophys. Rep. 2019, 17, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Kikawada, T.; Nakahara, Y.; Kanamori, Y.; Iwata, K. ichi; Watanabe, M.; McGee, B.; Tunnacliffe, A.; Okuda, T. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem. Biophys. Res. Commun. 2006, 348, 56–61. [Google Scholar] [CrossRef]
- Wolkers, W.F.; McCready, S.; Brandt, W.F.; Lindsey, G.G.; Hoekstra, F.A. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2001, 1544, 196–206. [Google Scholar] [CrossRef]
- Gilles, G.J.; Hines, K.M.; Manfre, A.J.; Marcotte, W.R. A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol. Biochem. 2007, 45, 389–399. [Google Scholar] [CrossRef]
- Singh, K.K.; Graether, S.P. Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. PLoS ONE 2020, 15, e0237177. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Velazquez, C.L.; Reyes, J.L.; Covarrubias, A.A. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. Plant Signal. Behav. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- French-Pacheco, L.; Cuevas-Velazquez, C.L.; Rivillas-Acevedo, L.; Covarrubias, A.A.; Amero, C. Metal-binding polymorphism in late embryogenesis abundant protein AtLEA4-5, an intrinsically disordered protein. PeerJ 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Velasco, R.; Salamini, F.; Bartels, D. Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant Craterostigma plantagineum Hochst. Planta 1998, 204, 459–471. [Google Scholar] [CrossRef]
- Skrypnik, W.I. Periodic Coulomb Dynamics of Three Equal Negative Charges in the Field of Equal Positive Charges Fixed in Octagon Vertices. Adv. Math. Phys. 2020, 2020, 3547136. [Google Scholar] [CrossRef]
- Nishimura, A.; Suwabe, R.; Ogihara, Y.; Yoshida, S.; Abe, H.; Osawa, S. ichiro; Nakagawa, A.; Tominaga, T.; Nishizawa, M. Totally transparent hydrogel-based subdural electrode with patterned salt bridge. Biomed. Microdevices 2020, 22. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Liu, J.; Xie, L.; Huang, J.; Zeng, H. Interfacial ion specificity modulates hydrophobic interaction. J. Colloid Interface Sci. 2020, 578, 135–145. [Google Scholar] [CrossRef]
- Wise, M.J.; Tunnacliffe, A. POPP the question: What do LEA proteins do? Trends Plant Sci. 2004, 9, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Chakrabortee, S.; Tripathi, R.; Watson, M.; Schierle, G.S.K.; Kurniawan, D.P.; Kaminski, C.F.; Wise, M.J.; Tunnacliffe, A. Intrinsically disordered proteins as molecular shields. Mol. Biosyst. 2012, 8, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Bartley, B.A.; Kim, K.; Medley, J.K.; Sauro, H.M. Synthetic Biology: Engineering Living Systems from Biophysical Principles. Biophys. J. 2017, 112, 1050–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Sleight, S.C.; Sauro, H.M. Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucleic Acids Res. 2013, 41, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, J.; Watters, K.E.; Takahashi, M.K.; Lucks, J.B. A renaissance in RNA synthetic biology: New mechanisms, applications and tools for the future. Curr. Opin. Chem. Biol. 2015, 28, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.S.; Lu, T.K.; Bashor, C.J.; Ramirez, C.L.; Pyenson, N.C.; Joung, J.K.; Collins, J.J. A synthetic biology framework for programming eukaryotic transcription functions. Cell 2012, 150, 647–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, F.C.; de Holanda, R.C.; Secchi, A.R.; de Souza, M.B.; Barreto, A.G. Simultaneous absorption of UV–vis and circular dichroism to measure enantiomeric concentrations of praziquantel under nonlinear conditions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118645. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Han, L.; Chen, X.; Xie, M.; Kong, W.; Wu, Z. Dietary Supplementation of Probiotic Bacillus subtilis Affects Antioxidant Defenses and Immune Response in Grass Carp Under Aeromonas hydrophila Challenge. Probiotics Antimicrob. Proteins 2019, 11, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tang, X.; Wang, Y.; Zang, Y.; Zhou, B. A Zostera marina manganese superoxide dismutase gene involved in the responses to temperature stress. Gene 2016, 575, 718–724. [Google Scholar] [CrossRef]
- Sun, H.; Li, G.; An, T.; Zhao, H.; Wong, P.K. Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants. Water Res. 2016, 88, 135–143. [Google Scholar] [CrossRef]
- Xiao, X.; Cheng, Y.; Song, D.; Li, X.; Hu, Y.; Lu, Z.; Wang, F.; Wang, Y. Selenium-enriched Bacillus paralicheniformis SR14 attenuates H2O2-induced oxidative damage in porcine jejunum epithelial cells via the MAPK pathway. Appl. Microbiol. Biotechnol. 2019, 103, 6231–6243. [Google Scholar] [CrossRef]
- Shih, M. Der; Hsieh, T.Y.; Jian, W.T.; Wu, M.T.; Yang, S.J.; Hoekstra, F.A.; Hsing, Y.I.C. Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy. Plant Sci. 2012, 196, 152–159. [Google Scholar] [CrossRef]
- Thalhammer, A.; Hundertmark, M.; Popova, A.V.; Seckler, R.; Hincha, D.K. Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state. Biochim. Biophys. Acta Biomembr. 2010, 1798, 1812–1820. [Google Scholar] [CrossRef] [Green Version]
- Popova, A.V.; Hundertmark, M.; Seckler, R.; Hincha, D.K. Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes. Biochim. Biophys. Acta Biomembr. 2011, 1808, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Hatanaka, R.; Furuki, T.; Shimizu, T.; Takezawa, D.; Kikawada, T.; Sakurai, M.; Sugawara, Y. Biochemical and structural characterization of an endoplasmic reticulum-localized late embryogenesis abundant (LEA) protein from the liverwort Marchantia polymorpha. Biochem. Biophys. Res. Commun. 2014, 454, 588–593. [Google Scholar] [CrossRef]
- Walsh, I.; Martin, A.J.M.; Di Domenico, T.; Vullo, A.; Pollastri, G.; Tosatto, S.C.E. CSpritz: Accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs. Nucleic Acids Res. 2011, 39, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Dosztányi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21, 3433–3434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Zhao, M.; Tang, Y.; Han, J.; Gui, Y.; Ge, J.; Jiang, S.; Dai, Q.; Zhang, W.; Lin, M.; et al. Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli. Int. J. Mol. Sci. 2021, 22, 4482. https://doi.org/10.3390/ijms22094482
Guo L, Zhao M, Tang Y, Han J, Gui Y, Ge J, Jiang S, Dai Q, Zhang W, Lin M, et al. Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli. International Journal of Molecular Sciences. 2021; 22(9):4482. https://doi.org/10.3390/ijms22094482
Chicago/Turabian StyleGuo, Leizhou, Mingming Zhao, Yin Tang, Jiahui Han, Yuan Gui, Jiaming Ge, Shijie Jiang, Qilin Dai, Wei Zhang, Min Lin, and et al. 2021. "Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli" International Journal of Molecular Sciences 22, no. 9: 4482. https://doi.org/10.3390/ijms22094482
APA StyleGuo, L., Zhao, M., Tang, Y., Han, J., Gui, Y., Ge, J., Jiang, S., Dai, Q., Zhang, W., Lin, M., Zhou, Z., & Wang, J. (2021). Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli. International Journal of Molecular Sciences, 22(9), 4482. https://doi.org/10.3390/ijms22094482