Rhodamine 6G-Ligand Influencing G-Quadruplex Stability and Topology
<p>Structure of ligands directly used in this study.</p> "> Figure 2
<p>Absorption spectra of 130 µM ligands used in this study in a 25 mM mRB buffer, pH 7.0.</p> "> Figure 3
<p>Representative CD spectra of DNA sequences able to adopt different non-canonical structures. The concentration of DNA and ligand was 27 and 130 µM (~1:5 eqv.), respectively, in each measurement. ICD signals are highlighted with colored circles. The mBR contains 50 mM NaCl. The positive and two negative peaks are observed at ~510, ~540 and ~570 nm, respectively.</p> "> Figure 4
<p>CD and UV-Vis spectra of 130 µM RhG (<b>A</b>,<b>B</b>) and RhB (<b>D</b>,<b>E</b>) in mRB, supplemented with 50 mM KCl, pH 7.0. The increment of the Scle oligomer is 3.35 µM. The final concentration of DNA is ~27 µM (0.2 ekv). The enlarged UV-Vis region of the RhG absorption spectra shows a clear isosbestic point at 539 nm (<b>C</b>), but not in (<b>F</b>). 12% PAGE (<b>G</b>) in corresponding conditions; the concentration of the ligand in the two columns is 130 µM. The standard is a mixture of oligonucleotides AC9, AC18 and AC28.</p> "> Figure 5
<p>CD titration spectral measurements and PAGE of d(G<sub>3</sub>NG<sub>3</sub>)G<sub>3</sub> sequences (~27 µM) at different ionic conditions in the presence of increasing concentrations of RhG up to 260 µM (<b>A</b>). The increment of RhG is ~33 µM. The left and right PAGE panels (<b>B</b>) represent electrophoretic records in the absence and presence of 130 µM of ligand, respectively. Electrophoresis was performed in the presence of both 50 mM NaCl and KCl. The mixture of AC9, AC18 and AC28 is used as standard.</p> "> Figure 6
<p>(<b>A</b>) TGGE record of HTR sequence in 25 mM mBR, pH 7.0 supplemented with 2.5 mM KCl (up). The corresponding electrophoretic result contained 260 µM of Rh6G (down). (<b>B</b>) CD spectra under the same conditions as the TGGE assay in the presence and absence of RhG. The temperature dependences were obtained at 264 (red dashed line) and 294 (solid lines) nm. CD melting temperatures are shown in the enclosed table. These temperatures agree with those obtained with TGGE: 46.5 °C and 50.6 °C for antiparallel G4 in the absence and presence of RhG, respectively, and >62 ± 2 °C for parallel G4 with RhG.</p> "> Figure 7
<p>LGGE of HIV-M27 (d-[GTGGCCTGGGCGGGACTTGGGA]) performed in a 25 mM mRB buffer, pH 7.0 supplemented with 50 mM KCl and 0 to 260 µM rhodamines RhG (<b>left</b>) and RhB <b>right</b>). The concentration of polyacrylamide was 12%. The inset represents a corresponding CD spectrum under the same conditions. The concentration of ligand in CD was 0–260 µM, the increment is 65 µM. The G4 conversion from antiparallel to parallel monomer and dimer is highlighted with arrows. The left and right columns represent standard PAGE of HIV-M27 performed in gels containing 0 and 260 µM of ligands, respectively.</p> "> Figure 8
<p>Fluorescence titration of 25 nM RhG (<b>A</b>) and RhB (<b>B</b>) with the stepwise addition of the G3T oligonucleotide (0, 0.2, 0.4, 0.6, 0.8 and 1.0 µM) corresponding to 0−40 molar equivalents. Increasing concentrations of DNA are highlighted with arrows. Measurements were performed in a mRB buffer supplemented with 50 mM KCl at a pH of 7.0; excitation of RhG and RhB at 527 nm and 555 nM, respectively, the excitation and emission slits were 2.5 nm (5 nm in B) and the scan speed was 240 nm/min. 1 µM G4-ThT mixture (1: 1 molar eqv.) titrated with 0–1 µM RhG (<b>C</b>) and 0–10 µM RhB (<b>D</b>), the excitation was at 413 nm.</p> "> Figure 9
<p>Putative binding of the RhG ligand within the quadruplex structure PDB 2le6 (<b>A</b>) and 2jpz (<b>B</b>) obtained from docking simulations. Only the leading structures of the most populated binding clusters are depicted. The quadruplex is drawn in a solvent-accessible surface representation. The ligand is shown in a ball and stick representation. The solvent-accessible surface of the ligand is also shown. The ligand is shown fitting into the quadruplex grooves. The subunits of 2le6 are colored with different hues, pale green and blue grey. Images were prepared using Chimera software [<a href="#B43-ijms-22-07639" class="html-bibr">43</a>].</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Spectral Properties of DNA-Ligand Complexes
RhG versus RhB
2.2. RhG: Influence on Polymorphism and Stability
2.3. Temperature and Concentration Measurements
2.4. Fluorescence Spectroscopic Properties of RhB and RhG
2.5. Molecular Modeling of Ligand-G4 Interactions
3. Materials and Methods
3.1. Circular Dichroism Spectroscopy
3.2. CD Melting Curves
3.3. Electrophoresis
3.4. Fluorescence Spectroscopy
3.5. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bohálová, N.; Cantara, A.; Bartas, M.; Kaura, P.; Šťastný, J.; Pečinka, P.; Fojta, M.; Mergny, J.L.; Brázda, V. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 2021, 186, 13–27. [Google Scholar] [CrossRef]
- Ruggiero, E.; Richter, S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res. 2018, 46, 3270–3283. [Google Scholar] [CrossRef] [PubMed]
- Viglasky, V.; Hianik, T. Potential uses of G-quadruplex-forming aptamers. Gen. Physiol. Biophys. 2013, 32, 149–172. [Google Scholar] [CrossRef]
- Roxo, C.; Kotkowiak, W.; Pasternak, A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019, 24, 3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banco, M.T.; Ferré-D’Amaré, A.R. The emerging structural complexity of G-quadruplex RNAs. RNA 2021, 27, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Mitra, J.; Ha, T. Nanomechanics and co-transcriptional folding of Spinach and Mango. Nat. Commun. 2019, 10, 4318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddy, J.; Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006, 34, 3887–3896. [Google Scholar] [CrossRef] [Green Version]
- Bedrat, A.; Lacroix, L.; Mergny, J.L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. [Google Scholar] [CrossRef] [PubMed]
- Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005, 33, 2908–2916. [Google Scholar] [CrossRef] [Green Version]
- Huppert, J.L. Four-stranded nucleic acids: Structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 2008, 37, 1375–1384. [Google Scholar] [CrossRef]
- Bidzinska, J.; Cimino-Reale, G.; Zaffaroni, N.; Folini, M. G-quadruplex structures in the human genome as novel therapeutic targets. Molecules 2013, 18, 12368–12395. [Google Scholar] [CrossRef] [PubMed]
- Neidle, S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat. Rev. Chem. 2017, 1, 95. [Google Scholar] [CrossRef]
- Ou, T.M.; Lu, Y.J.; Tan, J.H.; Huang, Z.S.; Wong, K.Y.; Gu, L.Q. G-quadruplexes: Targets in anticancer drug design. ChemMedChem 2008, 3, 690–713. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zheng, Y.; Zhai, Q.; Wei, D. Recent advances in the development of small molecules targeting RNA G-quadruplexes for drug discovery. Bioorg. Chem. 2021, 110, 804. [Google Scholar] [CrossRef]
- Berrones Reyes, J.; Kuimova, M.K.; Vilar, R. Metal complexes as optical probes for DNA sensing and imaging. Curr. Opin. Chem. Biol. 2021, 61, 179–190. [Google Scholar] [CrossRef]
- Guan, L.; Zhao, J.; Sun, W.; Deng, W.; Wang, L. Meso-Substituted Thiazole Orange for Selective Fluorescence Detection to G-Quadruplex DNA and Molecular Docking Simulation. ACS Omega 2020, 5, 26056–26062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, L.; Jiang, W. Label free DNA detection based on gold nanoparticles quenching fluorescence of Rhodamine B. Talanta 2011, 85, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Wang, L.; Huang, Y.; Liu, D.; Sun, R.; Luo, J.; Sun, C. A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes Pigments 2015, 123, 55–63. [Google Scholar] [CrossRef]
- Kennedy, J.; Larrañeta, E.; McCrudden, M.T.C.; McCrudden, C.M.; Brady, A.J.; Fallows, S.J.; McCarthy, H.O.; Kissenpfennig, A.; Donnelly, R.F. In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles. J. Control. Release 2017, 265, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Jbeily, N.; Claus, R.A.; Dahlke, K.; Neugebauer, U.; Bauer, M.; Gonnert, F.A. Comparative suitability of CFDA-SE and rhodamine 6G for in vivo assessment of leukocyte-endothelium interactions. J. Biophotonics 2014, 7, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Thaler, S.; Haritoglou, C.; Choragiewicz, T.J.; Messias, A.; Baryluk, A.; May, C.A.; Rejdak, R.; Fiedorowicz, M.; Zrenner, E.; Schuettauf, F. In vivo toxicity study of rhodamine 6G in the rat retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; et al. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci. Rep. 2016, 6, 24793. [Google Scholar] [CrossRef] [Green Version]
- Largy, E.; Granzhan, A.; Hamon, F.; Verga, D.; Teulade-Fichou, M.P. Visualizing the quadruplex: From fluorescent ligands to light-upprobes. Top. Curr. Chem. 2013, 330, 111–177. [Google Scholar]
- Vorlíčková, M.; Kejnovská, I.; Bednářová, K.; Renčiuk, D.; Kypr, J. Circular dichroism spectroscopy of DNA: From duplexes to quadruplexes. Chirality 2012, 24, 691–698. [Google Scholar] [CrossRef]
- Hud, N.V.; Smith, F.W.; Anet, F.A.; Feigon, J. The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR. Biochemistry 1996, 35, 15383–15390. [Google Scholar] [CrossRef]
- Luu, K.N.; Phan, A.T.; Kuryavyi, V.; Lacroix, L.; Patel, D.J. Structure of the human telomere in K+ solution: An intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970. [Google Scholar] [CrossRef] [Green Version]
- Tóthová, P.; Krafčíková, P.; Víglaský, V. Formation of highly ordered multimers in G-quadruplexes. Biochemistry 2014, 53, 7013–7027. [Google Scholar] [CrossRef]
- Tlučková, K.; Marusič, M.; Tóthová, P.; Bauer, L.; Sket, P.; Plavec, J.; Víglasky, V. Human papillomavirus G-quadruplexes. Biochemistry 2013, 52, 7207–7216. [Google Scholar] [CrossRef] [PubMed]
- Kocman, V.; Plavec, J. A tetrahelical DNA fold adopted by tandem repeats of alternating GGG and GCG tracts. J. Nat. Commun. 2014, 5, 5831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaccarino, N.; Di Porzio, A.; Amato, J.; Pagano, B.; Brancaccio, D.; Novellino, E.; Leardi, R.; Randazzo, A. Assessing the influence of pH and cationic strength on i-motif DNA structure. Anal. Bioanal. Chem. 2019, 411, 7473–7479. [Google Scholar] [CrossRef] [PubMed]
- Demkovičová, E.; Bauer, Ľ.; Krafčíková, P.; Tlučková, K.; Tóthova, P.; Halaganová, A.; Valušová, E.; Víglaský, V. Telomeric G-Quadruplexes: From Human to Tetrahymena Repeats. J. Nucleic Acids 2017, 2017, 9170371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krafčíková, P.; Demkovičová, E.; Víglaský, V. Ebola virus derived G-quadruplexes: Thiazole orange interaction. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Helttunen, K.; Prus, P.; Luostarinen, M.; Nissinen, M. Interaction of aminomethylated resorcinarenes with rhodamine B. New J. Chem. 2009, 33, 1148–1154. [Google Scholar] [CrossRef]
- Shum, K.T.; Chan, C.; Leung, C.M.; Tanner, J.A. Identification of a DNA aptamer that inhibits sclerostin’s antagonistic effect on Wnt signalling. Biochem. J. 2011, 434, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Víglaský, V.; Antalík, M.; Bagel’ová, J.; Tomori, Z.; Podhradský, D. Heat-induced conformational transition of cytochrome c observed by temperature gradient gel electrophoresis at acidic pH. Electrophoresis 2000, 21, 850–858. [Google Scholar] [CrossRef]
- Víglaský, V.; Bauer, L.; Tlucková, K. Structural features of intra- and intermolecular G-quadruplexes derived from telomeric repeats. Biochemistry 2010, 49, 2110–2120. [Google Scholar] [CrossRef]
- Krafčíková, P.; Demkovičová, E.; Halaganová, A.; Víglaský, V. Putative HIV and SIV G-Quadruplex Sequences in Coding and Noncoding Regions Can Form G-Quadruplexes. J. Nucleic Acids 2017, 2017, 6513720. [Google Scholar] [CrossRef]
- Gabelica, V.; Maeda, R.; Fujimoto, T.; Yaku, H.; Murashima, T.; Sugimoto, N.; Miyoshi, D. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Biochemistry 2013, 52, 5620–5628. [Google Scholar] [CrossRef]
- Lubitz, I.; Zikich, D.; Kotlyar, A. Specific high-affinity binding of thiazole orange to triplex and G-quadruplex DNA. Biochemistry 2010, 49, 3567–3574. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013, 135, 367–376. [Google Scholar] [CrossRef]
- Sjekloca, L.; Ferre-D’Amare, A.R. Binding between G Quadruplexes at the Homodimer Interface of the Corn RNA Aptamer Strongly Activates Thioflavin T Fluorescence. Cell Chem. Biol. 2019, 26, 1159. [Google Scholar] [CrossRef]
- Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc. 2008, 130, 6722–6724. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, L.; Tlučková, K.; Tóhová, P.; Viglaský, V. G-quadruplex motifs arranged in tandem occurring in telomeric repeats and the insulin-linked polymorphic region. Biochemistry 2011, 50, 7484–7492. [Google Scholar] [CrossRef] [PubMed]
- Poniková, S.; Tlučková, K.; Antalík, M.; Víglaský, V.; Hianik, T. The circular dichroism and differential scanning calorimetry study of the properties of DNA aptamer dimers. Biophys. Chem. 2011, 155, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Carver, M.; Punchihewa, C.; Jones, R.A.; Yang, D. Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: Insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res. 2007, 35, 4927–4940. [Google Scholar] [CrossRef] [Green Version]
- Do, N.Q.; Lim, K.W.; Teo, M.H.; Heddi, B.; Phan, A.T. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res. 2011, 39, 9448–9457. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graphics Mod. 1999, 17, 57–61. [Google Scholar]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Melting Temperature [°C] | |||||
---|---|---|---|---|---|
Oligo | Wavelength [nm] | 50 mM NaCl | 50 mM KCl | ||
No Ligand | RhG | No Ligand | RhG | ||
HTR | 294 | 52.0 | 52.0 | 63.5 | 64.0 |
Scle | 264 | 62.0 | 77.0 | 81.5 | >100 |
TBA | 294 | 20.0 | 26.8 | 46.5 | 48.5 |
Hema | 264 | ND | 54.3 | 72.0 | 86.0 |
STAT | 264 | 54.5 | 76.5 | 92.8 | >100 |
HCV | 264 | 44.5 | 60.0 | 72.6 | 86.0 |
ionK | 294 | 46.2 | 48.5 | 59.1 | 58.0 |
VEGF | 264 | 47.5 | 82.0 | 85.6 | 87.9 |
no ligand a | RhG a | ||||
C3A2T b | 286 | 28.3 | 24.3 | ||
TFO1 | 282 | 20.4 | 17.7 |
No. | Name | Sequence in 5′→3′ Direction | Category and Preferred Motif | |
---|---|---|---|---|
1 | G3A | GGGAGGGAGGGAGGGA | G3Nn [31] | G-quadruplex |
2 | G3C | GGGCGGGCGGGCGGGC | ||
3 | G3T | GGGTGGGTGGGTGGGT | ||
4 | G3T2 | GGGTTGGGTTGGGTTGGG | ||
5 | G3T3 | GGGTTTGGGTTTGGGTTTGGG | ||
6 | G3T4 | GGGTTTTGGGTTTTGGGTTTTGGG | ||
7 | HTR | GGGTTAGGGTTAGGGTTAGGG | ||
8 | HTR2 | AGGGTTAGGGTTAGGGTTAGGGT | ||
9 | HTR-T | GGGTTAGGGTTAGGGTTAGGGT | ||
10 | G3T2C | GGGTTCGGGTTCGGGTTCGGG | ||
11 | 8G3 | GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG | ||
12 | 8G3T2 | GGGTTGGGTTGGGTTGGGTTGGGTTGGGTTGGGTTGGG | ||
13 | 8G3T3 | GGGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGG | ||
14 | G3-3-A20 | GGGTTAGGGTTAGGGTTAGGGAAAAAAAAAAAAAAAAAAAA | ||
15 | G3-5-T20 | TTTTTTTTTTTTTTTTTTTTGGGTTAGGGTTAGGGTTAGGG | ||
16 | G4T | GGGGTGGGGTGGGGTGGGG | G4Nn [31] | |
17 | G4T2 | GGGGTTGGGGTTGGGGTTGGGG | ||
18 | G4T3 | GGGGTTTGGGGTTTGGGGTTTGGGG | ||
19 | G4T4 | GGGGTTTTGGGGTTTTGGGGTTTTGGGG | ||
20 | G4T2A | GGGGTTAGGGGTTAGGGGTTAGGGG | ||
21 | HCV | GGGCGTGGTGGGTGGGGT | Aptamers [45] | |
22 | Hema | GGGGTCGGGCGGGCCGGGTG | ||
23 | HIV | GGGGTGGGAGGAGGGT | ||
24 | Insu | GGTGGTGGGGGGGGTTGGTAGGGT | ||
25 | ionK | GGGTTAGGGTTAGGGTAGGG | ||
26 | OCH-A | CGGGTGTGGGTGGCGTAAAGGGA | ||
27 | Scle | TGGGGGGGTGGGTGGGT | ||
28 | STAT | GGGCGGGCGGGCGGG | ||
29 | TBA | GGTTGGTGTGGTTGG | ||
30 | TBA-5T | GGTTGGTGTGGTTGGTTTTTGGTTGGTGTGGTTGG | ||
31 | VEGF | GGGGCGGGCCGGGGGCGGG | ||
32 | HIV1-K02 | GTGGCCTGGGCGGGACTGGGGA | HIV [37] | |
33 | HIV1-K03 | CGGGGTTGGGAGGTGGGT | ||
34 | HIV1-L20 | TGGGAGGGATAAGGGGCGGTTCGGGGA | ||
35 | HIV1-M27 | GTGGCCTGGGCGGGACTTGGGA | ||
36 | E-Cote2 | TGGGGAGGGTGGGGAGGGTGGGGAAGG | Ebola virus [32] | |
37 | E-Cote4 | TGGGATGGGTGGGGTGCTTGTCTGGGGC | ||
38 | MarRavn | GTGGTCGGCGTGGGGGGGAGGGT | ||
39 | c-myc | TGGGGAGGGTGGGGAGGGTGGGGAAGG | Others | |
40 | N-myc | TAGGGCGGGAGGGAGGGAA | ||
41 | pUC-G1 | GGGGTGTTGGCGGGTGTCGGGGC | ||
42 | RAN | TGGGGGTGGGGTTGGGTGGTGT | ||
43 | RAN-del | TGGGGGTGGGGTTGGGTGGT | ||
44 | Z-G4 | TGGTGGTGGTGTGGTGGTGGTGGTGTT | ||
45 | i-HTR | CCCAATCCCAATCCCAATCCC | i-motif | |
46 | i-HTR2 | TCCCAATCCCAATCCCAATCCCA | ||
47 | C3-Msl1 | CCCTAACCCTAAACCCTAACCC | ||
48 | AC9 | ACACACACA | ssDNA | |
49 | AC12 | ACACACACACAC | ||
50 | AC18 | ACACACACACACACACAC | ||
51 | AC28 | ACACACACACACACACACACACACACAC | ||
52 | AT-alt | ATATATATATATCCCATATATATATAT | dsDNA | |
53 | GC-alt | GCGCGCGCGCGCTTTGCGCGCGCGCGC | ||
54 | ctDNA | Unspecified calf thymus DNA | ||
55 | TFO1 | AAAAAAAACCCCTTTTTTTTCCCCTTTTTTTT | triplex | |
56 | TFO2 | AGAGAGAACCCCTTCTCTCTTATATCTCTCTT | ||
57 | VK1 | GGGAGCGAGGGAGCG | AG-tetraplex [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trizna, L.; Janovec, L.; Halaganová, A.; Víglaský, V. Rhodamine 6G-Ligand Influencing G-Quadruplex Stability and Topology. Int. J. Mol. Sci. 2021, 22, 7639. https://doi.org/10.3390/ijms22147639
Trizna L, Janovec L, Halaganová A, Víglaský V. Rhodamine 6G-Ligand Influencing G-Quadruplex Stability and Topology. International Journal of Molecular Sciences. 2021; 22(14):7639. https://doi.org/10.3390/ijms22147639
Chicago/Turabian StyleTrizna, Lukáš, Ladislav Janovec, Andrea Halaganová, and Viktor Víglaský. 2021. "Rhodamine 6G-Ligand Influencing G-Quadruplex Stability and Topology" International Journal of Molecular Sciences 22, no. 14: 7639. https://doi.org/10.3390/ijms22147639
APA StyleTrizna, L., Janovec, L., Halaganová, A., & Víglaský, V. (2021). Rhodamine 6G-Ligand Influencing G-Quadruplex Stability and Topology. International Journal of Molecular Sciences, 22(14), 7639. https://doi.org/10.3390/ijms22147639