The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean
<p>Sequence analyses of <span class="html-italic">GmFLC-like</span>. (<b>A</b>) Structure of GmFLC-like conserved domains, MADS-box (1–61 aa) and K (keratin-like) domains (81–171 aa). (<b>B</b>) Phylogenetic analysis of the GmFLC-like and MIKC-type MADS-box proteins from Arabidopsis. The phylogenetic tree was constructed using the neighbor-joining method with 1000 bootstrap replicates by MEGA 7.0 software, and bootstrap values are shown at the nodes. The locus of Arabidopsis MADS-box proteins as follows: AG (AT4G18960), AGL1/SHP1 (AT3G58780), AGL2/SEP1 (AT5G15800), AGL3/SEP4 (AT2G03710), AGL4/SEP2 (AT2G21970), AGL5/SHP2 (AT2G42830), AGL6 (AT2G45650), AGL7/AP1 (AT1G69120), AGL8/FUL (AT5G60910), AGL9/SEP3 (AT1G24260), AGL10/CAL (AT1G26310), AGL11/STK1 (AT4G09960), AGL12 (AT1G71692), AGL13 (AT3G61120), AGL14 (AT4G11880), AGL15 (AT5G13790), AGL16 (AT3G57230), AGL17 (AT2G22630), AGL18 (AT3G57390), AGL19 (AT4G22950), AGL20/SOC1 (AT2G45660), AGL21 (AT4G37940), AGL22/SVP (AT2G22540), AGL24 (AT4G24540), AGL27/FLM (AT1G77080), AGL31/MAF2 (AT5G65050), AGL32/ABS (AT5G23260), AGL42 (AT5G62165), AGL44/ANR1 (AT2G14210), AGL68/FCL1 (AT5G65080), AGL69/FCL2 (AT5G65070), AGL70/FCL3 (AT5G65060), AGL71 (AT5G51870), AGL72 (AT5G51860), AGL79 (AT3G30260), PI (AT5G20240), P3 (AT3G54340), FLC/FLF (AT5G10140).</p> "> Figure 2
<p>Sequence alignment of the GmFLC-like protein and other FLC proteins from other species. The pink line marks the MADS-box domain (1–61 aa), and the light blue line labels the K domain (81–171 aa). GenBank accession numbers are as follows: <span class="html-italic">Glycine max</span> GmFLC-like (MK913903), <span class="html-italic">Arabidopsis thaliana</span> AtFLC (NP_196576), <span class="html-italic">Vigna unguiculata</span> VuFLC (XP_027918635), <span class="html-italic">Punica granatum</span> PgFLC (OWM76224v), <span class="html-italic">Citrus clementina</span> CcFLC (XP_024041198), <span class="html-italic">Brassica oleracea</span> BoFLC (AHH30724), <span class="html-italic">Sesamum indicum</span> SiFLC (XP_011086821), <span class="html-italic">Raphanus sativus</span> RsFLC (AJN00653), <span class="html-italic">Brassica napus</span> BnFLC (AFU61576).</p> "> Figure 3
<p>Expression analysis of <span class="html-italic">GmFLC-like</span> in different organs of soybean during multiple developmental stages under short-day (SD) conditions. U, the unifoliate period; T1, the first trifoliate period; T2, the second trifoliate period; T3, the third trifoliate period; T4, the fourth trifoliate period; Shoot apex (including apical meristem and immature leaves); Pod (14 days after flowering). <span class="html-italic">Gmβ-tubulin</span> (<span class="html-italic">Glyma20 g27280</span>) was used as an internal control. Error bar represents the means of three biological replicates, and the letters indicate significant differences according to Duncan’s multiple range test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Subcellular localization of GmFLC-like protein in tobacco leaves. GFP fused to the C-terminal region of GmFLC-like, and the fusion protein was driven by 35S promoter. A mCherry labeled fusion protein (NF-YA4-mCherry) was used as a nuclear marker driven by 35S, and <span class="html-italic">35S::GFP</span> was used as negative control. At 3 days after infiltration, the fluorescence signals (GFP and mCherry) were visualized by confocal microscopy, and the excitation wavelengths for GFP and mCherry were 488 and 543 nm, respectively. Scale bar, 50 μM.</p> "> Figure 5
<p>Ectopic expression of <span class="html-italic">GmFLC-like</span> in Arabidopsis. (<b>A</b>) Expression detection of <span class="html-italic">GmFLC-like</span> in transgenic plants. ND, not detected. (<b>B</b>) Phenotypic display of transgenic (L1, L46, and L48) and WT (Col-0) plants. The flowering phenotype of the <span class="html-italic">GmFLC</span>-like gene overexpression lines and WT plants were photographed at 5 weeks after sowing. Plants were grown at a growth chamber at 22 ± 1 °C under long-day (LD) conditions (16 h of light/8 h of dark). (<b>C</b>) Statistical analysis of days until the initial flowering of transgenic and WT (Col-0) plants. (<b>D</b>) Expression levels of flowering time genes in Arabidopsis. Arabidopsis <span class="html-italic">β-tubulin</span> (<span class="html-italic">AT5G62690</span>) was used as a negative control. Error bar represents the means of three biological replicates. Significant differences according to the <span class="html-italic">t</span>-test are denoted as follows: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001. WT means the wild-type of Arabidopsis; L1, L46, and L48 refer to independent transgenic lines.</p> "> Figure 6
<p>Expression analysis of <span class="html-italic">GmFLC-like</span> under SD and LD conditions at 12, 15, 18, 21, 24, 27, and 30 DAE (days after emergence). All seedlings were grown under SD conditions for 10 DAE, and then a portion of the seedlings were transferred to LD conditions. Fully expanded trifoliate leaves were sampled at the appointed time from three individual plants growing under SD and LD conditions. Significant differences according to the <span class="html-italic">t</span>-test are denoted as follows: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 7
<p><span class="html-italic">GmFLC-like</span> response to photoperiod and low temperature. (<b>A</b>) Expression analysis of <span class="html-italic">GmFLC-like</span> at 2, 4, 6, 8, and 10 days after the beginning of low-temperature treatments and the control. (<b>B</b>) Expression analysis of <span class="html-italic">GmFLC-like</span> at 2, 4, 6, 8, and 10 h after the beginning of low-temperature treatments and the control. Error bars represent the means of three biological replicates. Significant differences according to the <span class="html-italic">t</span>-test are denoted as follows: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 8
<p>GmFLC-like protein binds to the promoter region of <span class="html-italic">FT2a</span>. (<b>A</b>) Expression analysis of <span class="html-italic">GmFTs</span> genes in soybean after the beginning of low-temperature treatments at 8 DAE. The soybean accession numbers are as follows: <span class="html-italic">GmFT1a</span> (<span class="html-italic">Glyma18g53680</span>), <span class="html-italic">GmFT4</span> (<span class="html-italic">Glyma08g47810</span>), <span class="html-italic">GmFT1b</span> (<span class="html-italic">Glyma18g53690</span>), <span class="html-italic">GmFT2a</span> (<span class="html-italic">Glyma16g26660</span>), <span class="html-italic">GmFT2b</span> (<span class="html-italic">Glyma16g26690</span>), <span class="html-italic">GmFT3a</span> (<span class="html-italic">Glyma16g04840</span>), <span class="html-italic">GmFT3b</span> (<span class="html-italic">Glyma19g28390</span>), <span class="html-italic">GmFT5a</span> (<span class="html-italic">Glyma16g04830</span>), and <span class="html-italic">GmFT5b</span> (<span class="html-italic">Glyma19g28400</span>). <span class="html-italic">Gm</span><span class="html-italic">β-tubulin</span> (<span class="html-italic">Glyma20g27280</span>) was used as an internal control. The mean values ± SD from three biological replicates are shown. Significant differences according to the <span class="html-italic">t</span>-test are denoted as follows: ** <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. (<b>B</b>) Interaction of GmFLC-like protein and <span class="html-italic">CmFT2a</span> promoter and the intron region, as revealed using a yeast one-hybrid system. The yeast transformations were plated onto SD/-Ura (upper panel) and SD/-Leu containing 300 ng/mL AbA (lower panel). pGADT7 with pAbAi-proFT2a-1 (from −1275 to −1156 bp), pAbAi-proFT2a-2 (from −671 to −552 bp), pAbAi-intFT2a-1 (from 410 to 551 bp), and pAbAi-intFT2a-2 (from 654 to 841 bp), were used as negative controls. The experiment was performed independently three times. (<b>C</b>) Relative reporter activity (LUC/REN) in <span class="html-italic">N. benthamiana</span> leaves. the relative luciferase activity (LUC/REN) in tobacco leaves were measured after 48 h of <span class="html-italic">Agrobacterium</span> infiltration. Experiments were repeated five times and mean value ± SD is plotted on the graph. The letters indicate significant differences according to Duncan’s multiple range test (<span class="html-italic">p</span> < 0.05). (<b>D</b>) Gel-shift analysis of GmFLC-like binding to the promoter region of <span class="html-italic">GmFT2a</span>. The sequence fragment from −663 to −628 of the <span class="html-italic">GmFT2a</span> promoters was used as a probe, and the core sequences are underlined. Purified protein (3 µg) was incubated with 25 picomoles biotin-labeled probe. For competition test, non-labeled probes at varying concentrations (from 10- to 100-fold excess), and mutated unlabeled CArG probe were added to the above experiment.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Glyma05g28130 Is a Homologue of AtFLC
2.2. Expression Profile and Biochemical Properties of GmFLC-like
2.3. Overexpression of GmFLC-like Caused Late Flowering in Arabidopsis
2.4. GmFLC-like Is Responsive to the Photoperiod and Low Temperature
2.5. Identification of GmFT2a as a Downstream Target of GmFLC-like
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Total RNA Isolation and qRT-PCR Analysis
4.3. Plasmid Construction
4.4. Sequence Analysis
4.5. Subcellular Localization of GmFLC-like Protein
4.6. Ectopic Expression of GmFLC-like in Arabidopsis
4.7. Photoperiod Treatment
4.8. Low-Temperature Treatment
4.9. Yeast One-Hybrid Assay
4.10. Dual-Luciferase Reporter Assay
4.11. Electrophoretic Mobility Shift Assay
4.12. Data Analysis
4.13. Data Availability
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LD | long-day |
SD | short-day |
FLC | flowering locus C |
Y1H | yeast one-hybrid |
EMSA | electrophoretic mobility shift assay |
FT | flowering locus T |
FRI | frigida |
VIN3 | vernalization insensitive 3 |
COOLAIR | cold induced long antisense intragenic RNA |
COLDAIR | cold assisted intronic noncolding RNA |
SOC1 | suppressor of overexpression of constants 1 |
VRN1 | vernalization 1 |
VRN2 | vernalization 2 |
AP1 | apetala 1 |
MS | murashige and skoog |
TUB2 | tubulin beta chain 2 |
AbA | aureobasidin A |
IPTG | β-d-1-thiogalactopyranoside |
References
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, C.; Xu, Y.; Wang, T.; Chen, Y.; Lü, J.; Zhang, L.; Jiang, C.-Z.; Hong, B.; Gao, J. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willmann, M.R.; Poethig, R.S. Time to grow up: The temporal role of smallRNAs in plants. Curr. Opin. Plant Biol. 2005, 8, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäurle, I.; Dean, C. The Timing of Developmental Transitions in Plants. Cell 2006, 125, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, P.; Guo, H.; Chi, W.; Chai, X.; Sun, X.; Xu, X.; Ma, J.; Rochaix, J.-D.; Leister, D.; Wang, H.; et al. Chloroplast retrograde signal regulates flowering. Proc. Natl. Acad. Sci. USA 2016, 113, 10708–10713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izawa, T. Daylength Measurements by Rice Plants in Photoperiodic Short-Day Flowering. In International Review of Cytology; Academic Press: Cambridge, MA, USA, 2007; Volume 256, pp. 191–222. [Google Scholar]
- Cerdán, P.D.; Chory, J. Regulation of flowering time by light quality. Nature 2003, 423, 881. [Google Scholar] [CrossRef]
- Capovilla, G.; Schmid, M.; Posé, D. Control of flowering by ambient temperature. J. Exp. Bot. 2015, 66, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Amasino, R. Vernalization, Competence, and the Epigenetic Memory of Winter. Plant Cell 2004, 16, 2553–2559. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, R.J.; Amasino, R.M. Vernalization: A model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim. Biophys. Acta (BBA)-Gene Struct. Exp. 2007, 1769, 269–275. [Google Scholar] [CrossRef]
- Samach, A.; Wigge, P.A. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 2005, 8, 483–486. [Google Scholar] [CrossRef]
- Michaels, S.D.; Amasino, R.M. FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell 1999, 11, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Suh, S.-S.; Park, E.; Cho, E.; Ahn, J.H.; Kim, S.-G.; Lee, J.S.; Kwon, Y.M.; Lee, I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000, 14, 2366–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johanson, U.; West, J.; Lister, C.; Michaels, S.; Amasino, R.; Dean, C. Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science 2000, 290, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, V.; Roux, F.; Reboud, X. DNA Polymorphism at the FRIGIDA Gene in Arabidopsis thaliana: Extensive Nonsynonymous Variation Is Consistent with Local Selection for Flowering Time. Mol. Biol. Evol. 2002, 19, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Gazzani, S.; Gendall, A.R.; Lister, C.; Dean, C. Analysis of the Molecular Basis of Flowering Time Variation in Arabidopsis Accessions. Plant Physiol. 2003, 132, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Shindo, C.; Aranzana, M.J.; Lister, C.; Baxter, C.; Nicholls, C.; Nordborg, M.; Dean, C. Role of FRIGIDA and FLOWERING LOCUS C in Determining Variation in Flowering Time of Arabidopsis. Plant Physiol. 2005, 138, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.; Amasino, R.M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 2004, 427, 159. [Google Scholar] [CrossRef]
- Kim, D.-H.; Sung, S. Coordination of the Vernalization Response through a VIN3 and FLC Gene Family Regulatory Network in Arabidopsis. Plant Cell 2013, 25, 454–469. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Doyle, M.R.; Sung, S.; Amasino, R.M. Vernalization: Winter and the Timing of Flowering in Plants. Annu. Rev. Cell Dev. Biol. 2009, 25, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Swiezewski, S.; Liu, F.; Magusin, A.; Dean, C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 2009, 462, 799–802. [Google Scholar] [CrossRef]
- Heo, J.B.; Sung, S. Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA. Science 2011, 331, 76–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-H.; Xi, Y.; Sung, S. Modular function of long noncoding RNA, COLDAIR, in the vernalization response. PLoS Genet. 2017, 13, e1006939. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Penfield, S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 2018, 360, 1014–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hepworth, S.R.; Valverde, F.; Ravenscroft, D.; Mouradov, A.; Coupland, G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 2002, 21, 4327–4337. [Google Scholar] [CrossRef] [Green Version]
- Helliwell, C.A.; Wood, C.C.; Robertson, M.; Peacock, W.J.; Dennis, E.S. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 2006, 46, 183–192. [Google Scholar] [CrossRef]
- Searle, I.; He, Y.; Turck, F.; Vincent, C.; Fornara, F.; Kröber, S.; Amasino, R.A.; Coupland, G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006, 20, 898–912. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Schluttenhofer, C.M.; Bhide, K.; Shreve, J.; Thimmapuram, J.; Lee, S.Y.; Yun, D.-J.; Mengiste, T. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat. Commun. 2014, 5, 3064. [Google Scholar] [CrossRef] [Green Version]
- Tadege, M.; Sheldon, C.C.; Helliwell, C.A.; Stoutjesdijk, P.; Dennis, E.S.; Peacock, W.J. Control of flowering time by FLC orthologues in Brassica napus. Plant J. 2001, 28, 545–553. [Google Scholar] [CrossRef]
- Schranz, M.E.; Quijada, P.; Sung, S.-B.; Lukens, L.; Amasino, R.; Osborn, T.C. Characterization and Effects of the Replicated Flowering Time Gene FLC in Brassica rapa. Genetics 2002, 162, 1457–1468. [Google Scholar]
- Reeves, P.A.; He, Y.; Schmitz, R.J.; Amasino, R.M.; Panella, L.W.; Richards, C.M. Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence from the Sugar Beet (Beta vulgaris). Genetics 2007, 176, 295–307. [Google Scholar] [CrossRef] [Green Version]
- D’Aloia, M.; Tocquin, P.; Périlleux, C. Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod. New Phytol. 2008, 178, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-L.; Todesco, M.; Hagmann, J.; Das, S.; Weigel, D. Independent FLC Mutations as Causes of Flowering-Time Variation in Arabidopsis thaliana and Capsella rubella. Genetics 2012, 192, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Périlleux, C.; Pieltain, A.; Jacquemin, G.; Bouché, F.; Detry, N.; D’Aloia, M.; Thiry, L.; Aljochim, P.; Delansnay, M.; Mathieu, A.-S.; et al. A root chicory MADS box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and de-vernalization responses. Plant J. 2013, 75, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Ream, T.S.; Woods, D.P.; Amasino, R.M. The Molecular Basis of Vernalization in Different Plant Groups. Cold Spring Harb. Symp. Quant. Biol. 2012, 77, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Sureshkumar, S.; Lempe, J.; Weigel, D. Potent Induction of Arabidopsis thaliana Flowering by Elevated Growth Temperature. PLoS Genet. 2006, 2, e106. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.T.; Lee, C.-R.; Mitchell-Olds, T. LIFE-HISTORY QTLS AND NATURAL SELECTION ON FLOWERING TIME IN BOECHERA STRICTA, A PERENNIAL RELATIVE OF ARABIDOPSIS. Evolution 2011, 65, 771–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, Y.; Higuchi, Y.; Sumitomo, K.; Hisamatsu, T. Flowering retardation by high temperature in chrysanthemums: Involvement of FLOWERING LOCUS T-like 3 gene repression. J. Exp. Bot. 2013, 64, 909–920. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wu, P.; Wang, Q.; Wang, W.; Zhang, C.; Sun, F.; Liu, Z.; Li, Y.; Hou, X. Comparative transcriptome discovery and elucidation of the mechanism of long noncoding RNAs during vernalization in Brassica rapa. Plant Growth Regul. 2018, 85, 27–39. [Google Scholar] [CrossRef]
- Jiang, B.; Yue, Y.; Gao, Y.; Ma, L.; Sun, S.; Wu, C.; Hou, W.; Lam, H.-M.; Han, T. GmFT2a Polymorphism and Maturity Diversity in Soybeans. PLoS ONE 2013, 8, e77474. [Google Scholar] [CrossRef]
- Nan, H.; Cao, D.; Zhang, D.; Li, Y.; Lu, S.; Tang, L.; Yuan, X.; Liu, B.; Kong, F. GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the bZIP Transcription Factor GmFDL19 in Soybean. PLoS ONE 2014, 9, e97669. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Price, B.W.; Haider, W.; Seufferheld, G.; Nelson, R.; Hanzawa, Y. Functional and Evolutionary Characterization of the CONSTANS Gene Family in Short-Day Photoperiodic Flowering in Soybean. PLoS ONE 2014, 9, e85754. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Lü, S.; Liang, S.; Wu, H.; Zhang, X.; Liu, B.; Kong, F.; Yuan, X.; Li, J.; Xia, Z. GmFT4, a Homolog of FLOWERING LOCUS T, Is Positively Regulated by E1 and Functions as a Flowering Repressor in Soybean. PLoS ONE 2014, 9, e89030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suo, H.; Ma, Q.; Ye, K.; Yang, C.; Tang, Y.; Hao, J.; Zhang, Z.J.; Chen, M.; Feng, Y.; Nian, H. Overexpression of AtDREB1A Causes a Severe Dwarf Phenotype by Decreasing Endogenous Gibberellin Levels in Soybean [Glycine max (L.) Merr.]. PLoS ONE 2012, 7, e45568. [Google Scholar] [CrossRef] [PubMed]
- Suo, H.; Lü, J.; Ma, Q.; Yang, C.; Zhang, X.; Meng, X.; Huang, S.; Nian, H. The AtDREB1A transcription factor up-regulates expression of a vernalization pathway gene, GmVRN1-like, delaying flowering in soybean. Acta Physiol. Plant. 2016, 38, 137. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.; Suo, H.; Yi, R.; Ma, Q.; Nian, H. Glyma11g13220, a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean [Glycine max (L.) Merr.], promotes flowering in Arabidopsis thaliana. BMC Plant Biol. 2015, 15, 232. [Google Scholar]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Buylla, E.R.; Liljegren, S.J.; Pelaz, S.; Gold, S.E.; Burgeff, C.; Ditta, G.S.; Vergara-Silva, F.; Yanofsky, M.F. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 2000, 24, 457–466. [Google Scholar] [CrossRef]
- Becker, A.; Winter, K.-U.; Meyer, B.; Saedler, H.; Theißen, G. MADS-Box Gene Diversity in Seed Plants 300 Million Years Ago. Mol. Biol. Evol. 2000, 17, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Theißen, G. Shattering developments. Nature 2000, 404, 711. [Google Scholar] [CrossRef]
- Whitelaw, C.A.; Lyssenko, N.N.; Chen, L.; Zhou, D.; Mattoo, A.K.; Tucker, M.L. Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. Plant Physiol. 2002, 128, 978–987. [Google Scholar] [CrossRef] [Green Version]
- Bastow, R.; Mylne, J.S.; Lister, C.; Lippman, Z.; Martienssen, R.A.; Dean, C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 2004, 427, 164. [Google Scholar] [CrossRef]
- Kong, F.; Liu, B.; Xia, Z.; Sato, S.; Kim, B.M.; Watanabe, S.; Yamada, T.; Tabata, S.; Kanazawa, A.; Harada, K.; et al. Two Coordinately Regulated Homologs of FLOWERING LOCUS T Are Involved in the Control of Photoperiodic Flowering in Soybean. Plant Physiol. 2010, 154, 1220–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Choi, C.W.; Kim, M.C. Identification of diversified functions of soybean FT homologs in photoperiod-dependent flowering time control. In Proceedings of the Korean Society of Crop Science Conference; The Korean Society of Crop Science: Gyeonggi-do, Korea, 2017; p. 100. [Google Scholar]
- Lutz, U.; Posé, D.; Pfeifer, M.; Gundlach, H.; Hagmann, J.; Wang, C.; Weigel, D.; Mayer, K.F.X.; Schmid, M.; Schwechheimer, C. Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genet. 2015, 11, e1005588. [Google Scholar] [CrossRef] [PubMed]
- Wurr, D.C.E.; Fellows, J.R.; Phelps, K.; Reader, R.J. Vernalization in calabrese (Brassica oleracea var. italica)-a model for apex development. J. Exp. Bot. 1995, 46, 1487–1496. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.P.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Duan, W.; Zhang, H.; Zhang, B.; Wu, X.; Shao, S.; Li, Y.; Hou, X.; Liu, T. Role of vernalization-mediated demethylation in the floral transition of Brassica rapa. Planta 2017, 245, 227–233. [Google Scholar] [CrossRef]
- Blümel, M.; Dally, N.; Jung, C. Flowering time regulation in crops—What did we learn from Arabidopsis? Curr. Opin. Biotechnol. 2015, 32, 121–129. [Google Scholar] [CrossRef]
- Milec, Z.; Valárik, M.; Bartoš, J.; Šafář, J. Can a late bloomer become an early bird? Tools for flowering time adjustment. Biotechnol. Adv. 2014, 32, 200–214. [Google Scholar] [CrossRef]
- Arora, R.; Agarwal, P.; Ray, S.; Singh, A.K.; Singh, V.P.; Tyagi, A.K.; Kapoor, S. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom. 2007, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Dennis, E.S.; Peacock, W.J. Vernalization in cereals. J. Biol. 2009, 8, 57. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.-H.; Wong, C.E.; Singh, M.B.; Bhalla, P.L. Comparative Genomic Analysis of Soybean Flowering Genes. PLoS ONE 2012, 7, e38250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locascio, A.; Lucchin, M.; Varotto, S. Characterization of a MADS FLOWERING LOCUS C-LIKE (MFL) sequence in Cichorium intybus: A comparative study of CiMFL and AtFLC reveals homologies and divergences in gene function. New Phytol. 2009, 182, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.H.; Weyens, G.; Lefèbvre, M.; Bork, B.; Schechert, A.; Müller, A.E. The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Front. Plant Sci. 2014, 5, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldon, C.C.; Burn, J.E.; Perez, P.P.; Metzger, J.; Edwards, J.A.; Peacock, W.J.; Dennis, E.S. The FLF MADS Box Gene: A Repressor of Flowering in Arabidopsis Regulated by Vernalization and Methylation. Plant Cell 1999, 11, 445–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ge, X.; Sun, M. Modified CTAB Protocol Using a Silica Matrix for Isolation of Plant Genomic DNA. BioTechniques 2000, 28, 432–434. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- HALL, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Feng, M.; Chen, W.; Zhou, X.; Lu, J.; Wang, Y.; Li, Y.; Jiang, C.-Z.; Gan, S.-S.; Ma, N.; et al. In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. Nat. Plants 2019, 5, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Qin, R.-Y.; Li, H.; Xu, R.-F.; Yang, Y.-C.; Ni, D.-H.; Ma, H.; Li, L.; Wei, P.-C.; Yang, J.-B. Low-temperature-induced expression of rice ureidoglycolate amidohydrolase is mediated by a C-repeat/dehydration-responsive element that specifically interacts with rice C-repeat-binding factor 3. Front. Plant Sci. 2015, 6, 1011. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Feng, H.; Meng, X.; Li, D.; Yang, D.; Wu, C.; Meng, Q. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol. 2014, 14, 351. [Google Scholar] [CrossRef] [Green Version]
cis-Element | Sequence (5′-3′) | Position (From ATG) | Description |
---|---|---|---|
Light regulation elements | |||
AE-box | AGAAACTT | -1089(-) | Part of a module for light response |
CATT-motif | GCATTC | -1467(-),-517(-) | Part of a light responsive element |
G-box | TACGTG | -134(-) | cis-acting regulatory element involved in light responsiveness |
TCT-motif | TCTTAC | -425(-) | Part of a light responsive element |
AT1-motif | AATAATTTTTTATT | -915(+) | Part of a light responsive module |
Box 4 | ATTAAT,TA(C/A)TTA | -1259(+),-498(+),-169(+),-574(+),-285(+) | Part of a conserved DNA module involved in light responsiveness |
Box I | TTTCAAA | -581(-),-506(-) | Light responsive element |
G-Box | CACGT(T/A) | -790(+),-117(+) | cis-acting regulatory element involved in light responsiveness |
as-2-box | GATAATGATT | -657(-) | Involved in shoot-specific expression and light responsiveness |
rbcS-CMA7a | GGCTATAAGG | -104(+) | Part of a light responsive element |
chs-CMA1a | TTACTTAA | -575(-) | Part of a light responsive element |
Hormone and development-related elements | |||
Circadian | CAANNNNATC | -86(-) | cis-acting regulatory element involved in circadian control |
Skn-1_motif | GTCAT | -148(+),-1396(+) | cis-acting regulatory element required for endosperm expression |
ABRE | (C/T)ACGTG | -139(+),-112(-) | cis-acting element involved in the abscisic acid responsiveness |
GARE-motif | TCTGTTG | -1071(-) | gibberellin-responsive element |
TCA | GAGAAGAATA,CCATTTTTTT | -1162(-),-751(-) | cis-acting element involved in salicylic acid responsiveness |
AuxRR-core | GGTCCAT | -748(-) | cis-acting regulatory element involved in auxin responsiveness |
Abiotic stress response elements | |||
HSE | AAAAAATTTA | -423(+) | cis-acting element involved in heat shock responsiveness |
MBS | (C/T)AACTG | -1081(-),-649(+) | MYB binding site involved in drought-inducibility |
ARE | TGGTTT | -1131(+) | cis-acting regulatory element essential for the anaerobic induction |
CE3 | AACGCGTGTC | -1330(+) | cis-acting element involved in ABA and VP1 responsiveness |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, J.; Cai, Z.; Li, Y.; Suo, H.; Yi, R.; Zhang, S.; Nian, H. The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean. Int. J. Mol. Sci. 2020, 21, 1322. https://doi.org/10.3390/ijms21041322
Lyu J, Cai Z, Li Y, Suo H, Yi R, Zhang S, Nian H. The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean. International Journal of Molecular Sciences. 2020; 21(4):1322. https://doi.org/10.3390/ijms21041322
Chicago/Turabian StyleLyu, Jing, Zhandong Cai, Yonghong Li, Haicui Suo, Rong Yi, Shuai Zhang, and Hai Nian. 2020. "The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean" International Journal of Molecular Sciences 21, no. 4: 1322. https://doi.org/10.3390/ijms21041322